Cho đoạn thẳng AB, M là điểm nằm giữa A và B. Trên cùng nửa mặt phẳng bờ AB ke các hình vuông ACDM và MNPB. Gọi K là giao điểm của CP và NB. CMR:
a) KC=KP
b) A, D, K thẳng hàng
c) Khi M di chuyển giữa A và B thì khoảng cách từ K đến AB không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi OO là giao ÁC,MDÁC,MD
ˆCHA=90∘⇒HO=AC2=MD2⇒ˆDHM=90∘CHA^=90∘⇒HO=AC2=MD2⇒DHM^=90∘
Tương tự ˆFHM=90∘⇒ˆDHF=90circ⇒D,H,FFHM^=90∘⇒DHF^=90circ⇒D,H,F thẳng hàng
Gọi II là giao DF,ACDF,AC
Đỏ ỐIỐI song song MF⇒IMF⇒I là trung điểm của DFDF
Kẻ II′⊥AB⇒I′II′⊥AB⇒I′ là trung điểm ABAB
Chứng minh II′=AB2⇒III′=AB2⇒I nằm trên đường trung trực của ABAB và cách ABAB một khoảng bằng AB2AB2
Không vẽ hình vì sợ duyệt nhé.
Tứ giác ADNM nội tiếp nên \(\widehat{ADM}=\widehat{ANM}\)
Tứ giác AMCD là hình vuông nên \(\widehat{ADM}=45^0\)
Từ đó \(\widehat{ANM}=45^0\)
Tứ giác BENM nội tiếp nên \(\widehat{ENM}+\widehat{EBN}=180^0\)\(\Rightarrow\widehat{ENM}=180^0-\widehat{EBM}\)
Tứ giác BMEF là hình vuông nên \(\widehat{EBM}=45^0\)
Từ đó \(\widehat{ENM}=180^0-45^0=135^0\)
Ta có \(\widehat{ANE}=\widehat{ANM}+\widehat{ENM}=45^0+135^0=180^0\)
Từ đó ta có A, N, E thẳng hàng.