Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Kẻ \(CE\perp AM;DG\perp MB\) , ta thấy ngay CE = EM; DG = GM (Do AMNP, BMLKA là hình vuông)
Từ I kẻ IJ // CE // DG : IJ là đường trung bình hình thang CEGD. Vậy thì
\(IJ=\frac{EC+DG}{2}=\frac{EM+MG}{2}=\frac{AB}{4}=\frac{a}{4}.\)
Do \(IJ\perp AB\) nên khoảng cách từ I tới AB là IJ = \(\frac{a}{4}.\)
b. Do khoảng cách từ I tới AB không thay đổi nên khi M di chuyển trên AB thì I di chuyển trên đường thẳng song song AB, cách AB một khoảng bằng \(\frac{a}{4}.\)
Bài của mình giống cô giáo :
Câu hỏi của Nguyễn Minh Phương - Toán lớp 8 - Học toán với OnlineMath
Cậu tahm khảo bài của cô nha
a) Kẻ CE, IH, DF vuông góc với AB.
Ta chứng minh được
CE = \(\dfrac{AM}{2},\) DF = \(\dfrac{MB}{2},\)
CE + DF = \(\dfrac{AB}{2}=\dfrac{a}{2}\)
nên IH = \(\dfrac{a}{4}.\)
b) Khi điểm M di chuyển trên đoạn thẳng AB thì I di chuyển trên đoạn thẳng RS song song với AB và cách AB một khoảng bằng \(\dfrac{a}{4}\) (R là trung điểm của AQ, S là trung điểm của BQ, Q là giao điểm của BL và AN).