5x+1+5x+2=750
Giải giúp mình vs ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)
Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)
Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)
Từ `(3)` ta xét `2` trường hợp :
+, Nếu `2x+3y+1 \ne 0` thì :
`(3)=>5x=9=>x=9/5`
Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :
\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)
+, Nếu `2x+3y+1=0` thì :
`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
3\(x^2\).(5\(x\) + 1) + 6\(x^3\).(5\(x\) + 2) = 9\(x^3\) .(5\(x\) + 3)
15\(x^3\) + 3\(x^2\) + 30\(x^4\) + 12\(x^3\) = 45\(x^4\) + 27\(x^3\)
(15\(x^3\) + 12\(x^3\)) + 3\(x^2\) + 30\(x^4\) - 45\(x^4\) - 27\(x^3\) = 0
27\(x^3\) + 3\(x^2\) - 15\(x^4\) - 27\(x^3\) = 0
3\(x^2\) - 15\(x^4\) = 0
3\(x^2\).(1 - 5\(x^2\)) = 0
\(\left[{}\begin{matrix}x^2=0\\1-5x^2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\5x^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\mp\dfrac{\sqrt{5}}{5}\end{matrix}\right.\)
Ta có: \(5x^3+4x^2-3x\left(2x^2+7x-1\right)\)
\(=5x^3+4x^2-6x^3-21x^2+3x\)
\(=-x^3-17x^2+3x\)
6x3 - 7x2 + 5x - 2
= 6x3 - 4x2 - 3x2 + 2x + 3x - 2
= 6x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(6x2 - 3x + 3)
= 3(x - 2/3)(2x2 - x + 1)
4x3 + 5x2 + 10x - 12
= 4x3 - 3x2 + 8x2 - 6x + 16x - 12
= 4x2(x - 3/4) + 8x(x - 3/4) + 16(x - 3/4)
= (x - 3/4)(4x2 + 8x + 16)
= 4(x - 3/4)(x2 + 2x + 4)
4x3 - 7x2 - x + 3
= 4x3 - 3x2 - 4x2 + 3x - 4x + 3
= 4x2(x - 3/4) - 4x(x - 3/4) - 4(x - 3/4)
= (x - 3/4)(4x2 - 4x - 4)
= 4(x - 3/4)(x2 - x - 1)
4x3 - 5x2 + 6x + 9
= 4x3 + 3x2 - 8x2 - 6x + 12x + 9
= 4x2(x + 3/4) - 8x(x + 3/4) + 12(x + 3/4)
= (x + 3/4)(4x2 - 8x + 12)
= 4(x + 3/4)(x2 - 2x + 3)
3x3 - 5x2 + 5x - 2
= 3x3 - 2x2 - 3x2 + 2x + 3x - 2
= 3x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(3x2 - 3x + 3)
= 3(x - 2/3)(x2 - x + 1)
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=4\\2x=-1\\5x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{cases}}}\)
Vậy ...
Ối ối nhầm rồi :(
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\Leftrightarrow x=\frac{4}{3}\\2x=-1\Leftrightarrow x=-\frac{1}{2}\\5x=2\Leftrightarrow x=\frac{2}{5}\end{cases}}}\)
Vậy ... là nghiệm của pt
(x2-5x+7)2-(2x-5)2=0
⇔(x2-5x+7+2x-5)(x2-5x+7-2x+5)=0
⇔(x2-3x+2)(x2-7x+12)=0
⇔(x2-2x-x+2)(x2-3x-4x+12)=0
⇔[x(x-2)-(x-2)][x(x-3)-4(x-3)]=0
⇔(x-1)(x-2)(x-3)(x-4)=0
⇔x-1=0 hoặc x-2=0 hoặc x-3=0 hoặc x-4=0
⇔x=1 hoặc x=2 hoặc x=3 hoặc x=4.
Vậy tập nghiệm của pt trên là : S={1;2;3;4}
(x^2-5x+7)^2 - (2x-5)^2 = 0
<=> x^4 + 25^2 + 49 - 10x^3 - 70x + 14x^2 - (4x^2 - 20x + 25) = 0
<=> x^4 - 10x^3 + 39x^2 - 70x + 49 - 4x^2 + 20x - 25 = 0
<=> x^4 - 10x^3 + 35x^2 - 50x + 24 = 0
<=> x^4 - 4x^3 - 6x^3 + 24x^2 + 11x^2 - 44x - 6x + 24 = 0
<=> (x - 4)(x^3 - 6x^2 + 11x - 6) = 0
<=> (x - 4)(x^3 - 3x^2 - 3x^2 + 9x + 2x - 6) = 0
<=> (x - 4)(x - 3)(x^2 - 3x + 2) = 0
<=> (x - 4)(x - 3)(x - 2)(x - 1) = 0
<=> x ∈ {4,3,2,1}
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
Lời giải:
$5^x+5^{x+1}+5^{x+2}+5^{x+3}=1+2+3+...+87+88-4^2$
$5^x(1+5+5^2+5^3)=88.89:2-16$
$5^x.156=3900$
$5^x=3900:156=25=5^2$
$\Rightarrow x=2$
\(5^{x+1}+5^{x+2}=750\)
\(\Leftrightarrow5^x.5^1+5^x.5^2=750\)
\(\Leftrightarrow5^x.5+5^x.25=750\)
\(\Leftrightarrow5^x.\left(5+25\right)=750\)
\(\Leftrightarrow5^x.30=750\)
\(\Leftrightarrow5^x=750:30\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Rightarrow x=2\)
5x + 1 + 5x + 2 = 750
=> 5x . 5 + 5x . 52 = 750
=> 5x . (5 + 52) = 750
=> 5x . (5 + 25) = 750
=> 5x . 30 = 750
=> 5x = 750 : 30
=> 5x = 25
=> 5x = 52
=> x = 2
Vậy x = 2