cho A = 1+2^1+2^2+2^3+2^2005
a , tinh 2 A
b , chứng minh A =2^2006-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
I don't now
mik ko biết
sorry
......................
1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)
Vậy ta có ĐPCM
2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
a)\(A=1+2^1+2^2+...+2^{2005}\)
\(2A=2+2^2+2^3+...+2^{2006}\)
b) \(2A-A=\left(2+2^2+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)
\(A=2^{2006}-1\)
đpcm
a) \(A=1+2+2^2+...+2^{2005}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2006}\)
b) \(2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)
\(\Rightarrow A=2^{2006}-1\)(đpcm)
_Chúc bạn học tốt_