K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a)\(A=1+2^1+2^2+...+2^{2005}\)

\(2A=2+2^2+2^3+...+2^{2006}\)

b) \(2A-A=\left(2+2^2+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)

\(A=2^{2006}-1\)

             đpcm

26 tháng 7 2018

a) \(A=1+2+2^2+...+2^{2005}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2006}\)

b) \(2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)

\(\Rightarrow A=2^{2006}-1\)(đpcm)

_Chúc bạn học tốt_

24 tháng 6 2018

a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=B\left(ĐPCM\right)\)

b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)

\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

24 tháng 6 2018

ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v

I don't now

mik ko biết 

sorry 

......................

chịuiuiuiuiuiuiuiuiuiuiuiu

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

5 tháng 9 2015

a) A = 22007-1 => A + 1  = 22007

b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006

c) C = 4 + 22 + 23+...+22005 = 2+ 2+ ...+ 22005 + 4

2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006

31 tháng 7 2018

a/ Có \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b/ Có \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2008}\right)-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Leftrightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2^1-2^2-2^3-...-2^{2007}\)

\(\Leftrightarrow A=2^{2008}-1\)

( bạn có chép sai đề không vậy )

31 tháng 7 2018

giúp mình với.