rút gọn:
a, a(b+1)-b+1/b(a-1)+a-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-4-\sqrt{x^4-8x^2+16}=x-4-\sqrt{[\left(x-2\right)\left(x+2\right)]^2}\)
\(A=x-4-\left(x-2\right)\left(x+2\right)=x-4-\left(x^2-4\right)=-x^2+x\)
\(B=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)
\(=64-x^3+\left(x-4\right)^3\)
\(=64-x^3+x^3-12x^2+48x-64\)
\(=-12x^2+48x\)
b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(=27x^3+8-27x^3+8\)
=16
c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)
\(=x^3+1-x\left(x^2+2x+1\right)\)
\(=x^3+1-x^3-2x^2-x\)
\(=-2x^2-x+1\)
a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25\\ =25-x^2-4x+x^2-25\\ =-4x\)
b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3\\ =x^3+x+x^2+1-x^3-3x^2-3x-1\\ =-2x^2-2x\)
c) \(\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2\)
\(=x^2+y^2+4+2xy-4y-4x-2\left(xy+y^2-2y+x^2+xy-2x\right)+x^2+2xy+y^2\)
\(=x^2+y^2+4+2xy-4y-4x-2\left(2xy+y^2-2y+x^2-2x\right)+x^2+2xy+y^2\)
\(=x^2+y^2+4+2xy-4y-4x-4xy-2y^2+4y-2x^2+4x+x^2+2xy+y^2\)
\(=4\)
a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25=25-x^2-4x+x^2-25=-4x\)b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3=\left(x+1\right)\left[x^2+1-\left(x+1\right)^2\right]=\left(x+1\right)\left(x^2+1-x^2-2x-1\right)=\left(x+1\right)\left(-2x\right)\)c) \(C=\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
I don't now
mik ko biết
sorry
......................
\(\frac{a\left(b+1\right)-b-1}{b\left(a-1\right)+\left(a-1\right)}\)
\(=\frac{\left(b+1\right)\left(a-1\right)}{\left(a-1\right)\left(b+1\right)}\)
\(=1\)