K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overline{abcde}\)

a có 9 cách chọn 

b có 9 cách chọn 

c có 8 cách chọn 

d có 7 cách chọn

e có 6 cách chọn 

=>Số cách chọn là \(9\cdot9\cdot8\cdot7\cdot6=27216\left(cách\right)\)

d:

*Số lẻ:

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

*Số chẵn

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

e: e có 2 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 18000 cách

NV
19 tháng 2 2019

\(I_1=\int\limits^0_{-1}x\left(x^2-4\right)^{2019}dx=\dfrac{1}{2}\int\limits^0_{-1}\left(x^2-4\right)^{2019}d\left(x^2-4\right)\)

\(=\dfrac{1}{4040}\left(x^2-4\right)^{2020}|^0_{-1}=\dfrac{4^{2020}-3^{2020}}{4040}\)

\(I_2=\int\limits^0_{-1}x\left(x-6\right)^{2019}dx\)

Đặt \(x-6=t\Rightarrow dx=dt;\left\{{}\begin{matrix}x=-1\Rightarrow t=-7\\x=0\Rightarrow t=-6\end{matrix}\right.\)

\(\Rightarrow I_2=\int\limits^{-6}_{-7}\left(t+6\right)t^{2019}dt=\int\limits^{-6}_{-7}\left(t^{2020}+6t^{2019}\right)dt\)

\(=\left(\dfrac{t^{2021}}{2021}+\dfrac{3t^{2020}}{1010}\right)|^{-6}_{-7}=\dfrac{7^{2021}-6^{2021}}{2021}-\dfrac{3}{1010}\left(7^{2020}-6^{2020}\right)\)

19 tháng 2 2019

E cảm ơn ạ.

29 tháng 6 2023

a

a = 1, b = -3, c = 2

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=9-8=1\)

Nhẩm nghiệm:

a + b + c = 0 (1 - 3 + 2 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)

b

a = -2, b = 1, c = 1

\(\Delta=1^2-4.\left(-2\right).1=1+8=9\)

Nhẩm nghiệm:

a + b + c = 0 (-2 + 1 + 1 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{-2}=-\dfrac{1}{2}\)

c

a = 1, b = -4, c = 4

\(\Delta=\left(-4\right)^2-4.4=16-16=0\)

=> Phương trình có nghiệm kép.

\(x_1=x_2=-\dfrac{b}{2a}=\dfrac{-4}{2.1}=-2\)

d

a = 1, b = -1, c = 4

\(\Delta=\left(-1\right)^2-4.4=1-16=-15< 0\)

=> Phương trình vô nghiệm.

29 tháng 6 2023

a) x² - 3x + 2 = 0

a = 1; b = -3; c = 2

∆ = b² - 4ac = (-3)² - 4.1.2 = 9 - 8 = 1 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = [-(-3) + 1]/2 = 2

x₂ = (-b - √∆)/2a = [-(-3) - 1]/2 = 1

Vậy S = {1; 2}

b) -2x² + x + 1 = 0

a = -2; b = 1; c = 1

∆ = b² - 4ac = 1² - 4.(-2).1 = 9 > 0

Phương trình có hai nghiệm phân biệt

x₁ = (-b + √∆)/2a = (-1 + 3)/[2.(-2)] = -1/2

x₂ = (-b - √∆)/2a = (-1 - 3)/[2.(-2)] = 1

Vậy S = {-1/2; 1}

c) x² - 4x + 4 = 0

a = 1; b = -4; c = 4

∆ = b² - 4ac = (-4)² - 4.1.4 = 0

Phương trình có nghiệm kép:

x₁ = x₂ = -b/2a = -(-4)/(2.1) = 2

Vậy S = {2}

d) x² - x + 4 = 0

a = 1; b = -1; c = 4

∆ = b² - 4ac = (-1)² - 4.1.4 = -15 < 0

Phương trình vô nghiệm

26 tháng 2 2016

ta có pt đường cao kẻ từ B:(d1) x+3y-5=0 
vì AC _|_ (d1) và AC đi qua C(-1; -2) 
=> pt AC: 3(x+1) -(y+2) =0 
<=> 3x -y + 1=0 
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A 
=> A là nghiệm của hệ: 
{ 5x+y-9=0 
{ 3x -y + 1=0 
<=> 
x=1 ; y=4 
=> A( 1;4) 

Vì B ∈ (d1) => B(5- 3y; y) 
gọi I là trung điểm BC => I ∈ (d2) 
Vì I là trung điểm BC 
=> 
{ 2xI = xB + xC 
{ 2yI = yB + yC 
<=> 
{ xI= (5-3y-1)/2 = (4-3y)/2 
{ yI= (y -2)/2 

Vì I ∈ (d2) 
=> 5(4-3y)/2 + (y -2)/2 -9 =0 
<=> y= 0 
=> B( 5; 0) 
Vậy A( 1;4) và B( 5; 0)

19 tháng 7 2018

Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)

Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2

Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

NV
4 tháng 2 2021

\(I=\int\limits^{\sqrt{3}}_0\dfrac{x^2}{1+x^2}dx=\int\limits^{\sqrt{3}}_0\left(1-\dfrac{1}{1+x^2}\right)dx\)

\(=\left(x-arctan\left(x\right)\right)|^{\sqrt{3}}_0=\sqrt{3}-\dfrac{\pi}{3}\)

30 tháng 10 2023

a: \(\dfrac{1}{m-2}\cdot\sqrt{m^2-4m+4}\)

\(=\dfrac{1}{m-2}\cdot\sqrt{\left(m-2\right)^2}\)

\(=\dfrac{1}{m-2}\cdot\left|m-2\right|\)

\(=\dfrac{1}{m-2}\cdot\left(m-2\right)\left(m>2\right)\)

=1

b: \(2\sqrt{x}=14\)

=>\(\sqrt{x}=7\)

=>x=49

\(x+2\sqrt{x}+1=4\)

=>\(\left(\sqrt{x}+1\right)^2=4\)

=>\(\left[{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-3\left(loại\right)\end{matrix}\right.\)

=>x=1(nhận)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)

Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)

b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)

Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)