Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Câu 1:
Ta dễ dàng kiểm tra được \(C\notin\left(d_1\right):2x-3y+12=0\) nên hai đường thẳng \(\left(d_1\right),\left(d_2\right)\) không là đường cao và trung tuyến kẻ từ \(C\).
Không mất tính tổng quát giả sử chúng kẻ từ \(A\)
\(\Rightarrow\left\{{}\begin{matrix}A\in\left(d_1\right)\\A\in\left(d_2\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_A-3y_A+12=0\\2x_A+3y_A=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=-3\\y_A=2\end{matrix}\right.\Rightarrow A\left(-3;2\right)\)
Gọi trung điểm \(BC\) là \(M\) \(\Rightarrow M\in\left(d_2\right)\) \(\Rightarrow M\left(-\dfrac{3}{2}y;y\right)\)\(\Rightarrow\overrightarrow{CM}=\left(-\dfrac{3}{2}y-4;y-1\right)\).
VTPT của \(\left(d_1\right)\) là \(\overrightarrow{n}=\left(2;-3\right)\).
Do \(\left(d_1\right)\) vuông góc \(BC\) nên \(\overrightarrow{CM}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}y-4=2k\\y-1=-3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-\dfrac{28}{5}\\k=\dfrac{11}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{42}{5};-\dfrac{28}{5}\right)\)
\(\Rightarrow B\left(\dfrac{64}{5};-\dfrac{61}{5}\right)\).
Câu 2:
\(\left\{{}\begin{matrix}B\in d_1\\B\in d_2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y-1=0\\2x+3y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=4\end{matrix}\right.\Rightarrow B\left(-3;4\right)\)
Gọi \(M\) là trung điểm \(AC\) \(\Rightarrow M\in d_2\Rightarrow M\left(x;2-\dfrac{2}{3}x\right)\Rightarrow\overrightarrow{AM}=\left(x-1;1-\dfrac{2}{3}x\right)\)
VTPT của \(d_1\) là \(\overrightarrow{n}=\left(1;1\right)\),
Do \(d_1\) vuông góc \(AC\Rightarrow\overrightarrow{AC}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=k\\1-\dfrac{2}{3}x=k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{6}{5}\\k=\dfrac{1}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{6}{5};\dfrac{6}{5}\right)\)
\(\Rightarrow C\left(\dfrac{7}{5};\dfrac{7}{5}\right)\).
\(M=\left(m;8m+4\right)\) là trung điểm AC.
\(\Rightarrow A=\left(2m+5;16m+14\right)\)
Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)
\(\Rightarrow m=-1\)
\(\Rightarrow A=\left(3;-2\right)\)
Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:
\(2x-y+4=0\)
B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)
1.
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)
\(\Rightarrow A\left(-5;-3\right)\)
Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:
\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)
Gọi M là trung điểm BC thì tọa độ M thỏa mãn:
\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)
M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)
2.
Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)
M thuộc trung tuyến kẻ từ A nên:
\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)
\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)
Tọa độ A là:
\(\left\{{}\begin{matrix}2x+y=0\\x+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y=0\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y-x-y=0-\left(-1\right)\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Đường cao AH: 2x+y=0
mà BC\(\perp\)AH
nên BC: -x+2y+c=0
Thay x=2 và y=3 vào -x+2y+c=0, ta được:
-2+2*3+c=0
=>c+4=0
=>c=-4
=>BC: -x+2y-4=0
=>x-2y+4=0
Tọa độ M là:
\(\left\{{}\begin{matrix}x-2y+4=0\\x+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2y-4\\2y-4+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\x=2-4=-2\end{matrix}\right.\)
M(-2;1); B(2;3); C(x;y)
M là trung điểm của BC
nên \(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M\\y_B+y_C=2\cdot y_M\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2+x=2\cdot\left(-2\right)=-4\\3+y=2\cdot1=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\)
Vậy: C(-6;-1)
Gọi M là trung điểm BC . Ta có :
\(\left\{{}\begin{matrix}x_M=\frac{x_B+x_C}{2}=\frac{1+3}{2}=2\\y_M=\frac{y_B+y_C}{2}=\frac{2-4}{2}=-1\end{matrix}\right.\Rightarrow M\left(2;-1\right)\)
\(\overrightarrow{u_{AM}}=\left(2;-2\right)\Rightarrow\overrightarrow{n_{AM}}=\left(2;2\right)\)
PTTQ của AM : \(2\left(x-0\right)+2\left(y-1\right)=0\)
\(\Leftrightarrow x+y-1=0\)
Chọn A
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý