Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
a)
Gọi abcde là 5 chữ số khác nhau cần tìm
a-9cc
b \ {a} - 8cc
...
e \ {a,b,c,d} - 5cc
<=> 9*8*7*6*5=9P5=15120 số
b)
e {2,4,6,8} - 4cc
a \ {e} - 8cc
b \ {a,e} - 7cc
c \ {a,b,e} - 6cc
d \ {a,b,c,e} - 5cc
<=> 4 * 8P4 = 6720 số
a.
Có \(A_9^5=15120\) cách
b.
Gọi số đó là \(\overline{abcde}\) \(\Rightarrow e\) chẵn \(\Rightarrow e\) có 4 cách chọn
Bộ abcd có \(A_8^4=1680\) cách
tổng cộng: \(4.1680=...\) cách
Giả sử số đó là
Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2 c=5 . Với a=2 chọn b có 6 cách nên có 6 số thỏa mãn.
Với a khác 2 chọn a có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.
Do đó có 12+6+5=23 số thỏa mãn.
Chọn D.
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
a: \(\overline{abcde}\)
a có 9 cách chọn
b có 9 cách chọn
c có 8 cách chọn
d có 7 cách chọn
e có 6 cách chọn
=>Số cách chọn là \(9\cdot9\cdot8\cdot7\cdot6=27216\left(cách\right)\)
d:
*Số lẻ:
e có 5 cách chọn
a có 9 cách chọn
b có 10 cách chọn
c có 10 cách chọn
d có 10 cách chọn
=>Số cách chọn là 45000(cách)
*Số chẵn
e có 5 cách chọn
a có 9 cách chọn
b có 10 cách chọn
c có 10 cách chọn
d có 10 cách chọn
=>Số cách chọn là 45000(cách)
e: e có 2 cách chọn
a có 9 cách chọn
b có 10 cách chọn
c có 10 cách chọn
d có 10 cách chọn
=>Số cách chọn là 18000 cách