Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:
· Chọn 2 chữ số lẻ có cach; chọn 3 chữ số chẵn có cách
· Gọi số có 5 chữ số thỏa mãn đề bài là .
· Nếu a5 = 0 thì có 4! Cách chọn .
· Nếu a5 ≠ 0 thì có 2 cách chọn a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .
· Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có số.
Suy ra có 6000-3120=2880 số cần tìm.
Chọn D.
Đáp án B
Số cần lập là a b c d e f , ta có a + b + c – 1 = d + e + f <=> 20 = 2(d + e + f) <=> d + e + f = 10
Với mỗi f ∈ { 1 ; 3 ; 5 } => d, e có 4 cách chọn, suy ra a b c d e f có 4.3! = 24 cách chọn
Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài.
Đáp án : D
Ta xét hai trường hợp sau:
+) TH1. chọn d có 3 cách,b có 4 cách, c có 3 cách nên có 3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì chọn a có 4 cách, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d khác 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Ta xét hai trường hợp sau:
+) TH1 , chọn d có 3 cách, b có 4 cách, c có 3 cách nên có
3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì có 4 cách chọn a, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d ≠ 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Chọn D,
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là A 3 2 = 6 . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6. Gọi a b c d ; a, b, c, d ∈ {A, 0, 2, 4, 6} là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu d = 0 số cách lập là: 1 A 4 3 = 24 .
*TH2: Nếu d ≠ 0 thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54
Số cách lập: 6(24+54) = 468 cách.
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
gọi số cần tìm là abcdef (abcdef chẵn a#0)
a,b,c,d,e,f đều có 4 cách chọn
=> 46 =4096 số tmycbt