cho tam giác abc cân tại a m là trung điiểm của đường cao ah. d là giapo điểm của CM và ab. qua m kẻ dường thẳng song song với bd cắt ac ở e.
a) gọi n là trung điểm bd. chứng minh hn song song với dc
b) ad = 1/3 ba
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Tự vẽ hình nha
a) VÌ tam giác ABC cân tại A mà AH là dduongf cao
=> AH là trung trực , trung tuyến , phân giác , dduongf cao
vì AH là trung tuyến
=> BH = HC
mà ND = NB
=> NH là đường trung bình của tam giác BDC
=> NH // DC hay NH // DM
b) Vì NH // DM
AM = MH
=> AD = DN
mà DN = BN
=> AD = DN = BN
=> AD \(=\frac{1}{3}\)AB
Vì AD = DN ( cmt )
AM = MH ( GT )
=> DM là đường trung bình của tam giác ANH
=> DM = \(\frac{1}{2}\)HN
Study well