K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

1. qua de roi dung dinh li hinh chu nhat.

2.vi tam gic BDH vuong tai D co DM la duong trung tuyen nen DM=MN=BH/2

=>goc MDH = goc MHD(1)

tam gic DHE vuong tai H co HP la duong trung tuyen nen HP =DP=DE/2

=>goc HDP =goc DHP(2)

TU (1)(2) ma goc MHD+goc DHP=90

=.goc MDH +goc HDP=90=goc MDP

Tuong tu cm duoc goc NED=90

=>MDEN la hinh thanh vuong

3.dung dinh ly duong trung binh cua hinh thang

4.de dang cm duoc PN la duong trung binh tam giacHAC

=>PN //AC=>PN vuông góc với AB mà AH vuông góc với BC vá cắt PN tại P=>P la truc tam cua tam giac ABN

5.Ta co DM=BH/2

EN=HC/2

=>DM+EN=BC/2 (1)

Ta có S MNED = (MD+EN).DE/2 (2)

S ABC=AH.BC/2 (3)

AH=DE(4)

Tu (1)(2)(3)(4)=>S MNED=SABC/2

 

27 tháng 11 2017

ý 2 thiếu điều kiện // để chứng minh MDEN là hình thang .

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)(gt)

\(\widehat{AEH}=90^0\)(gt)

\(\widehat{ADH}=90^0\)(gt)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(hai đường chéo của hình chữ nhật ADHE)

mà AH=6cm(cmt)

nên DE=6cm

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

NV
23 tháng 12 2022

Em kiểm tra lại đề bài, tam giác ABC cân tại A hay vuông tại A?

Vì nếu cân tại A thì BH=CH, nhưng đề lại cho BH=2, CH=8 vô lý