K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Hỏi đáp Toán

Sửa đề lại nhé :D

25 tháng 7 2018

Thanks bạn nhưng mà bạn giúp mk câu đó đi thanghoa

14 tháng 3 2022

Ta có:

     (2 - 3x)(x + 8) = (3x - 2)(3 - 5x)

⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0

⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0

⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0

⇔ (2 - 3x)(11 - 4x) = 0

⇔ 2 - 3x = 0 hay 11 - 4x = 0

⇔ 2 = 3x hay 11 = 4x

⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)

Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)

14 tháng 3 2022


<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 +  3-5x ) =0 
<=> (2-3x ) ( 11 - 4x ) = 0
 => 2-3x  =0 hoặc 11-4x =0  
       3x = 2            4x =11
         x = 2/3         x    = 11/4

30 tháng 8 2017

\(\left(x^2-2x+6\right)\left(x^2-8x+4\right)+\left(5x+1\right)\left(x+1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow x^8-5x^2+7x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)

Xong rồi nhé

25 tháng 6 2019

\(\left(x^2-2x+6\right)\left(x^2-8x-4\right)+\left(5x+1\right)\)\(\left(x-1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=\)\(0\)

\(\Leftrightarrow x^8-5x^2+7x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)

~ 양 셜 김 ~

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

5 tháng 10 2016

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

5 tháng 10 2016

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)

=>-4x=5

hay x=-5/4

b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)

=>42x=41

hay x=41/42

26 tháng 5 2022

`a)(10x+9)x-(5x-1)(2x+3)=8`

`<=>10x^2+9x-10x^2-15x+2x+3=8`

`<=>-4x=5`

`<=>x=-5/4`     Vậy `S={-5/4}`

`b)(3x-5)(7-5x)+(5x+2)(3x-2)-2=0`

`<=>21x-15x^2-35+25x+15x^2-10x+6x-4-2=0`

`<=>42x=41`

`<=>x=41/42`       Vậy `S={41/42}`

14 tháng 4 2018

\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)

\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)

\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)

\(\Leftrightarrow-4x< -4\Rightarrow x>1\)

\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)

\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)

\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)

\(\Leftrightarrow0x< -64\)

bất phương trình vô nghiệm

29 tháng 2 2016

\(\Delta'=b'^2-ac=m^2-4m+4-2m+1=m^2-6m+5=\left(m-1\right)\left(m-5\right)\)

để pt có 2 nguyện dương =>\(\left(m-1\right)\left(m-5\right)\ge0\Rightarrow\)m>5 hoặc m<1

28 tháng 2 2016

1 \(\Delta\)=b2-4ac

=9-4{m-1}\(\ge0\)

\(\int^{x_1+x_2=\frac{-b}{a}=3}_{x_1.x_2=\frac{c}{a}=m-1}\)

them ph cua bn nua la ra hpt tim dc x1 x2