K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

ta có : \(A=sin^6a+cos^6a+3sin^2a-cos^2a\)

\(=\left(sin^2a\right)^3+\left(cos^3a\right)^2+3sin^2a-cos^2a\)

\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a-cos^2a\)

\(=1-3sin^2a.cos^2a+3sin^2a-cos^2a\)

\(=3sin^2a-3sin^2a.cos^2a+1-cos^2a\)

\(=3sin^2a\left(1-cos^2a\right)+\left(1-cos^2a\right)\) \(=\left(3sin^2a+1\right)\left(1-cos^2a\right)\)

\(=\left(3sin^2a+1\right)\left(sin^2a\right)=3sin^4a+sin^2a\)

\(A=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3\cdot sin^2a\cdot cos^2a\)

\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)

=1

29 tháng 8 2018

a, A = 2

b, B = 1

b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)

=1

NV
5 tháng 12 2021

\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)

\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)

\(=2cos^2a\)

\(cos^6a+sin^6a+3sin^2a.cos^2a\)

\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)

\(=1\)

2 tháng 11 2021

\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

28 tháng 5 2018

Chọn A.

Ta có: A= cos2( x-a) + cos2x -2cos a.cos x.cos( a - x).

= cos( x - a) [ cos(x - a) – 2cosa. cosx] + cos2x

= cos( x - a) [ cos x.cosa + sina.sinx – 2cosa.cosx] + cos2x

= cos( x - a) [ -cos x.cosa + sina.sinx] + cos2x

= -cos( x - a) .cos( x + a) + cos2x

5 tháng 6 2020

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

5 tháng 6 2020

viết lại đề đi cậu ơi

11 tháng 9 2017

A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)

=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)

\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)

24 tháng 9 2019

( tan2a+cot a)2 _  ( tan a - cot a )2