K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)

=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)

\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)

24 tháng 9 2019

( tan2a+cot a)2 _  ( tan a - cot a )2

30 tháng 10 2021

\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)

\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)

\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)

\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))

\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)

\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))

Vậy B = 1

TL

B=1 nhưng mik ko biết giải thích

K mik nha

Hok tốt

24 tháng 7 2018

ta có : \(A=sin^6a+cos^6a+3sin^2a-cos^2a\)

\(=\left(sin^2a\right)^3+\left(cos^3a\right)^2+3sin^2a-cos^2a\)

\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a-cos^2a\)

\(=1-3sin^2a.cos^2a+3sin^2a-cos^2a\)

\(=3sin^2a-3sin^2a.cos^2a+1-cos^2a\)

\(=3sin^2a\left(1-cos^2a\right)+\left(1-cos^2a\right)\) \(=\left(3sin^2a+1\right)\left(1-cos^2a\right)\)

\(=\left(3sin^2a+1\right)\left(sin^2a\right)=3sin^4a+sin^2a\)

31 tháng 10 2017

A = sin6α+ 3sin2α .cos2α   +  cos6α

    =  sin6α + 3sin2α .cos2α ( sin2α  + cos2α )   +  cos6α

    =  sin6α + 3sin4 α .cos2α  + 3sin4α .cos4α    +  cos6α

    =  (sin2α  + cos2α )2

    = 1

4 tháng 8 2018

a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))

\(\Rightarrow\left(đpcm\right)\)

\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)

a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2

Tớ không biết ghi anpha nên .. bucminh

8 tháng 10 2018

=(sin2α)3 + (cos2α)3 + 3sin2α - cos2α

= (sin2α + cos2α)(sin4α - sin2α.cos2α + cos4α) + 3sin2α - cos2α

= 1.(sin4α - sin2α.cos2α + cos4α) + 3sin2α - cos2α

= (1- cos2α) - (1- cos2α).cos2α + cos4α + 3(1- cos2α) - cos2α

[ có 1- cos2α là vì sin2α + cos2α = 1 => sin2α = 1- cos2α nên thay sin2α thành 1- cos2α ]

= 1 - 2cos2α + cos4α - cos2α + cos4α + cos4α + 3 - 3cos2α - cos2α

= 4 - 7cos2α + 3cos4α [rút vậy chắc gọn rồi ha =w=]

16 tháng 10 2015

\(A=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2acos^2a+cos^4a\right)+3sin^2acos^2a\)

A = \(sin^4+2sin^2acos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)