Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)
=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)
\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
ta có : \(A=sin^6a+cos^6a+3sin^2a-cos^2a\)
\(=\left(sin^2a\right)^3+\left(cos^3a\right)^2+3sin^2a-cos^2a\)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a-cos^2a\)
\(=1-3sin^2a.cos^2a+3sin^2a-cos^2a\)
\(=3sin^2a-3sin^2a.cos^2a+1-cos^2a\)
\(=3sin^2a\left(1-cos^2a\right)+\left(1-cos^2a\right)\) \(=\left(3sin^2a+1\right)\left(1-cos^2a\right)\)
\(=\left(3sin^2a+1\right)\left(sin^2a\right)=3sin^4a+sin^2a\)
A = sin6α+ 3sin2α .cos2α + cos6α = sin6α + 3sin2α .cos2α ( sin2α + cos2α ) + cos6α = sin6α + 3sin4 α .cos2α + 3sin4α .cos4α + cos6α = (sin2α + cos2α )2 |
= 1
=(sin2α)3 + (cos2α)3 + 3sin2α - cos2α
= (sin2α + cos2α)(sin4α - sin2α.cos2α + cos4α) + 3sin2α - cos2α
= 1.(sin4α - sin2α.cos2α + cos4α) + 3sin2α - cos2α
= (1- cos2α) - (1- cos2α).cos2α + cos4α + 3(1- cos2α) - cos2α
[ có 1- cos2α là vì sin2α + cos2α = 1 => sin2α = 1- cos2α nên thay sin2α thành 1- cos2α ]
= 1 - 2cos2α + cos4α - cos2α + cos4α + cos4α + 3 - 3cos2α - cos2α
= 4 - 7cos2α + 3cos4α [rút vậy chắc gọn rồi ha =w=]
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
\(A=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2acos^2a+cos^4a\right)+3sin^2acos^2a\)
A = \(sin^4+2sin^2acos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)