Rút gọn biểu thức:
A= (x+y-1)3-(x-y+1)3+6x^2(y-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
26:
A=12x^2+10x-6x-5-(12x^2-8x+3x-2)
=12x^2+4x-5-12x^2+5x+2
=9x-3
Khi x=-2 thì A=-18-3=-21
25:
b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)
=y^3+y^2+y-3y^2-3y-3-y^3+2y
=-2y^2-3
\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)
\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{5}{x+y}\)
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Sửa đề: \(A=\dfrac{1-3x}{2y}\cdot\sqrt{\dfrac{36y^2}{9x^2-6x+1}}\)
\(=\dfrac{1-3x}{2y}\cdot\sqrt{\left(\dfrac{6y}{3x-1}\right)^2}\)
\(=\dfrac{1-3x}{2y}\cdot\left|\dfrac{6y}{3x-1}\right|\)
x>1/3 nên 3x-1>0
y>0 nên 6y>0
=>\(A=\dfrac{1-3x}{2y}\cdot\dfrac{6y}{3x-1}=-3y\)
\(A=\left(x+y-1\right)3-\left(x-y+1\right)3+6x^2\left(y-1\right)\)
\(A=3\left(x+y-1-x+y-1\right)+6x^2\left(y-1\right)\)
\(A=3\left(2y-2\right)+6x^2\left(y-1\right)\)
\(A=3.2\left(y-1\right)+6x^2\left(y-1\right)\)
\(A=6\left(y-1\right)+6x^2\left(y-1\right)\)
\(A=6\left(y-1\right)\left(1+x^2\right)\)