\(\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy^2}-\sqrt{x^2y}}{\sqrt{x}-\sqrt{y}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{4xy}{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
b: \(=\sqrt{x}+\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=\sqrt{x}-\sqrt{y}-\sqrt{x}+\sqrt{y}=0\)
c: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`
`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`
`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`
`=8-5\sqrt{3}`
_______________________________________
`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}` `ĐK: x,y > 0`
`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`
`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`
`=-2\sqrt{y}`
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}\)
\(=\dfrac{1}{6}\sqrt{6}\)
b: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)