Chứng minh rằng : giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
B = 5x ( x - 7 ) ( x + 7 ) - x ( 2x - 1 )2 - ( x3 + 4x2 - 246x ) - 175
Các bạn giải gấp cho mình nha . Mình đag cần gấp .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5x\left(x^2-49\right)-x^3-4x^2+246x-175-x\left(4x^2-4x+1\right)\)
\(=5x^3-245x-x^3-4x^2+246x-175-4x^3+4x^2-x\)
\(=-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-5x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
\(M=\left(2x+5\right)^3-30x\left(2x+5\right)-8x^3\)
\(=\left(2x+5\right)\left(4x^2+20x+25-30x\right)-8x^3\)
\(=\left(2x+5\right)\left(4x^2-10x+25\right)-8x^3\)
\(=8x^3+125-8x^3\)
=125
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
\(B=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
=>gt bt trên ko phụ thuộc vào biến
P/s:bn dùng olm thì sang kb vs mk nha!