Chứng minh : ( 7n - 2 )2 - ( 2m - 7 )2 luôn luôn chia hết cho 9, với mọi n nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(7n - 2)2 - (2n - 7)2
= (7n - 2 + 2n - 7).(7n - 2 - 2n + 7)
= (9n - 9).(9n + 5)
= 9.(n - 1).(9n + 5) chia hết cho 9 ( đpcm)
Ta có: (7n-2)2 -(2n-7)2 = (7n-2 + 2n-7) .(7n-2 - 2n-7)
= (9n-9) . ((5n+(-9))
Ta có n là số nguyên, nếu ta thế 1 số nguyên nào vào hằng đẳng thức trên thì chắc chắn kết quả sẽ chia hết cho 9
Vd : ( 9.7-9).((5.7+(-9))= 54.26= 1404 chia hết cho 9 => (7n-2)2 -(2n-7)2 luôn chia hết cho 9 với mọi giá trị của n là giá trị nguyên .
Đề sai rồi bạn
Nếu ta thử n=0 thôi ta sẽ có:
\(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n
=-7n chia hết cho 7
Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)
n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9
Vậy với mọi n la só tu nhiên thì n.2+n+1 ko chia hết cho 9
a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp
=> (n+6)(n+7) chia hết cho 2
b) n^2 + n + 3 = n(n+1) +3
Vì n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2
mà 3 ko chia hết cho 2
=> n(n+1) +3 ko chia hết cho 2
=>n^2 + n ko chia hết cho 2
Xin phép được sửa đề :3
Ta có :
\(\left(7n-2\right)^2-\left(2n-7\right)^2\)
\(=\left(7n-2+2n-7\right)\left(7n-2-2n+7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)\)
\(=45\left(n-1\right)\left(n+1\right)\)
Vì \(45⋮9\) \(\Rightarrow45\left(n-1\right)\left(n+1\right)⋮9\)
Vậy \(\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 ( đpcm )