K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Bạn tham khảo link sau:

Câu hỏi của Tô Thu Huyền - Toán lớp 9 | Học trực tuyến

18 tháng 7 2017

A= \(\frac{\left(\sqrt{30}\right)^2-\left(\sqrt{29}\right)^2}{\sqrt{30}+\sqrt{29}}\)\(\frac{1}{\sqrt{30}+\sqrt{29}}\)

B= \(\frac{\left(\sqrt{29}\right)^2-\left(\sqrt{28}\right)^2}{\sqrt{29}+\sqrt{28}}\)\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Mà ta có \(\sqrt{30}+\sqrt{29}\)>\(\sqrt{28}+\sqrt{29}\)

Nên \(\frac{1}{\sqrt{30}+\sqrt{29}}\)<\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Suy ra A<B

18 tháng 7 2017

CÓ MA BIẾT KIT

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

Ta có:

\(A=\sqrt{30}-\sqrt{29}=\frac{30-29}{\sqrt{30}+\sqrt{29}}=\frac{1}{\sqrt{30}+\sqrt{29}}\)

\(B=\sqrt{29}-\sqrt{28}=\frac{29-28}{\sqrt{29}+\sqrt{28}}=\frac{1}{\sqrt{29}+\sqrt{28}}\)

Mà : \(\sqrt{30}+\sqrt{29}> \sqrt{29}+\sqrt{28}\Rightarrow \frac{1}{\sqrt{30}+\sqrt{29}}< \frac{1}{\sqrt{29}+\sqrt{28}}\Rightarrow A< B\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

AH
Akai Haruma
Giáo viên
29 tháng 2 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

22 tháng 10 2016

a] < b] < c] >

2 tháng 12 2019

giúp mình với ạ !

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được 
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}=5\)

\(\sqrt{3}>\sqrt{1}=1\)

\(\sqrt{2003}>\sqrt{1936}=44\)

\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)