Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{\left(\sqrt{30}\right)^2-\left(\sqrt{29}\right)^2}{\sqrt{30}+\sqrt{29}}\)= \(\frac{1}{\sqrt{30}+\sqrt{29}}\)
B= \(\frac{\left(\sqrt{29}\right)^2-\left(\sqrt{28}\right)^2}{\sqrt{29}+\sqrt{28}}\)= \(\frac{1}{\sqrt{29}+\sqrt{28}}\)
Mà ta có \(\sqrt{30}+\sqrt{29}\)>\(\sqrt{28}+\sqrt{29}\)
Nên \(\frac{1}{\sqrt{30}+\sqrt{29}}\)<\(\frac{1}{\sqrt{29}+\sqrt{28}}\)
Suy ra A<B
Lời giải:
Ta có:
\(A=\sqrt{30}-\sqrt{29}=\frac{30-29}{\sqrt{30}+\sqrt{29}}=\frac{1}{\sqrt{30}+\sqrt{29}}\)
\(B=\sqrt{29}-\sqrt{28}=\frac{29-28}{\sqrt{29}+\sqrt{28}}=\frac{1}{\sqrt{29}+\sqrt{28}}\)
Mà : \(\sqrt{30}+\sqrt{29}> \sqrt{29}+\sqrt{28}\Rightarrow \frac{1}{\sqrt{30}+\sqrt{29}}< \frac{1}{\sqrt{29}+\sqrt{28}}\Rightarrow A< B\)
a) 2 = √4 => √26 - √8 > 2
b) Dễ thấy √29 chắc chắn nhỏ hơn √41 => √29-√41 chắc chắn âm, còn 5=√25 => kết quả sẽ ra dương(√25>√10)
Suy ra √29 - √41 < 5- √10
Đây chỉ là cách tính nhanh của mình ,bn có thể dùng máy tính để tính lại.
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
bài 2 nhé, bài 1 không biết làm.
cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))
+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương
- nhắm đến hằng đẳng thức số 1 và số 2.
+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối
* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)
=> ta sẽ phân tích số hạng chứa căn để tìm A và B
+ nhẩm bằng máy tính, tìm 2 số hạng:
thử lần lượt các trường hợp, lấy vd là câu c)
\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)
\(\Rightarrow AB=6\sqrt{5}\)
- đầu tiên xét đơn giản với B là căn 5 => A= 6
\(A^2+B^2=36+5=41\) (41 khác 29 => loại)
- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)
tương ứng A= 2; B = 3 căn 5
\(A^2+B^2=4+45=49\) (loại)
- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)
Tương ứng A= 3 ; B= 2 căn 5
\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)
Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)
+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:
\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)
sau đó bạn làm tương tự như 2 câu mẫu bên dưới
* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối
a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)
a)\(-3\sqrt{29}=-\sqrt{3^2.29}=-\sqrt{261}\)
\(-15=-\sqrt{225}\)
Ta có: \(\sqrt{225}< \sqrt{261}\)
\(\Rightarrow-\sqrt{225}>-\sqrt{261}\)
\(\Rightarrow-15>-3\sqrt{29}\)
Vậy \(-15>-3\sqrt{29}\)
b) Ta có: \(\sqrt{3}< \sqrt{4}\)
\(\Rightarrow\sqrt{3}-1< \sqrt{4}-1=2-1=1\)
Vậy \(1>\sqrt{3}-1\)
Tham khảo nhé~
Bạn tham khảo link sau:
Câu hỏi của Tô Thu Huyền - Toán lớp 9 | Học trực tuyến