\(a.\sqrt[3]{5\sqrt{2}-7}-33\sqrt{2}và-1\)

3.tính giá trị của biểu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)

<=> A3 = 20 - 3×2A

<=> A3 + 6A - 20 = 0

<=> A = 2

21 tháng 10 2016

2 câu còn lại làm tương tự 

22 tháng 10 2016

ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)

=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)

do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0

dễ thấy A2+2A+10>0→A=2

b) giống a)

c)giống b)

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)

23 tháng 8 2020

\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{3+2\sqrt{2}}\)

\(A=\sqrt{2}-1-\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(A=\sqrt{2}-1-\sqrt{2}-1=-2\)

B = \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)

\(B=\sqrt{6+2\sqrt{5}-\sqrt{29-6\sqrt{20}}}\)

B = \(\sqrt{6+2\sqrt{5}-\sqrt{\left(3-\sqrt{20}\right)^2}}\)

\(B=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}\)

\(B=\sqrt{9}=3\)

23 tháng 8 2020

giúp mk c với d luôn đc ko

3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)

5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)

\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)

22 tháng 10 2018

C= 3√45+29√2+3√45−29√2

\(C^3=45+29\sqrt{2}+45-29\sqrt{2}+3\sqrt[3]{45+29\sqrt{2}}.\sqrt[3]{45-29\sqrt{2}}\left(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\right)\\ C^3=90+3\sqrt[3]{343}.C\\ C^3=90+21C\\ C^3-21C-90=0\\ C^3-36C+15C-90\\ C\left(C-6\right)\left(C+6\right)+15\left(C-6\right)=0\\ \left(C-6\right)\left[C\left(C+6\right)+15\right]=0\\ \left(C-6\right)\left(C^2+6C+15\right)=0\\ \)
Mà C2+6C+15=(C+3)2+6 > 0

Nên C-6=0

⇒C=6