K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Bạn tham khảo lời giải tại đây:
Câu hỏi của Trần Huỳnh Tú Trinh - Toán lớp 9 | Học trực tuyến

Với TH $CH=a=6$ cm thì theo lời giải ta có $S_{ABCD}=a^2=36$ (cm vuông)

25 tháng 12 2016

Vì AC là đường phân giác của góc A, suy ra đây là tính tình chất của hình vuông(mỗi đường chéo là đường phân giác 1 góc)

-> Tứ giác ABCD là hình vuông

Mà CH vuông góc với AB ->C trùng với B-> CB vuông góc với B

Theo đề, CH = 6 cm hay CB = 6 cm

-> Diện tích tứ giác ABCD là:

S(ABCD)= 6.6 =36(cm^2)

23 tháng 12 2018

Vì AC là đường phân giác của góc A, nên:

\(\Rightarrow\)Tứ giác ABCD là hình vuông.

Mà CH vuông góc với AB:

\(\Rightarrow\)C trùng với B

\(\Rightarrow\)CB vuông góc với B

Theo đề bài, CH = 6cm hay CB = 6cm

\(\Rightarrow\)Diện tích tứ giác ABCD là:

S ( ABCD ) = 6.6 = 36 (cm2)

Đáp số:....

                     

1 tháng 1 2017

36 cm2

30 tháng 1 2017

tính ntn vậy bạn

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Lời giải:

Kẻ $CT\perp AD$
Vì $\widehat{A}=90^0$ mà $AC$ là tia phân giác của góc $A$ nên $\widehat{HAC}=\widehat{CAT}=45^0$

Tam giác vuông tại $H$ là $HAC$ có góc $\widehat{HAC}=45^0$ nên là tam giác vuông cân, suy ra CH=AH$

Tứ giác $HATC$ có 4 góc đều là góc vuông và 2 cạnh kề nhau $CH=AH$ nên $HATC$ là hình vuông

$\Rightarrow CT=CH$

Xét tam giác $TDC$ và $HBC$ có:

$\widehat{DTC}=\widehat{BHC}=90^0$

$\widehat{TCD}=\widehat{HCB}(=90^0-\widehat{HCD})$

$TC=HC$ (cmt)

$\Rightarrow \triangle TDC=\triangle HBC(g.c.g)$

$\Rightarrow S_{TDC}=S_{HBC}$

Do đó:

$S_{ABCD}=S_{HBC}+S_{HADC}=S_{TDC}+S_{HADC}=S_{HACT}=CH^2=a^2$

(đơn vị diện tích)

Vậy....

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Hình vẽ:

Violympic toán 9

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

a) Xét ΔBAD và ΔABC có 

AB chung

\(\widehat{BAD}=\widehat{ABC}\)(gt)

AD=BC(gt)

Do đó: ΔBAD=ΔABC(c-g-c)

Suy ra: BD=AC(hai cạnh tương ứng)

Xét ΔADC và ΔBCD có 

AD=BC(gt)

AC=BD(cmt)

DC chung

Do đó: ΔADC=ΔBCD(c-c-c)

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)

\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD(cmt)

nên ABCD là hình thang(Định nghĩa hình thang)

Hình thang ABCD(AB//CD) có AC=BD(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

28 tháng 7 2021

còn thiếu câu b