CM (a+1)*(b+1)*(c+1)\(\ge\)8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+abc\right)\left(b+abc\right)\left(c+abc\right)=abc\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)=\left(ab+1\right)\left(ac+1\right)\left(bc+1\right)\)Á dụng bất đẳng thức Cauchy \(x+y\ge2\sqrt{xy}\) ta có
\(ab+1\ge2\sqrt{ab.1}=2\sqrt{ab}\)
\(bc+1\ge2\sqrt{bc.1}=2\sqrt{bc}\)
\(ac+1\ge2\sqrt{ac.1}=2\sqrt{ac}\)
=> \(\left(ab+1\right)\left(ac+1\right)\left(bc+1\right)\ge2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}=8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\sqrt{1}=8\)
hay \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\left(đpcm\right)\)
Đóng góp cách khác :))
Ta có:\(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Rightarrow a^2+2a+1-4a\ge0\)
\(\Rightarrow\left(a+1\right)^2\ge4a\)
TT\(\Rightarrow\left(b+1\right)^2\ge4b;\left(c+1\right)^2\ge4c\)
Nhân vế theo vế\(\Rightarrow\text{[}\left(a+1\right)\left(b+1\right)\left(c+1\right)\text{]}^2\ge64abc\)
\(\Rightarrow\text{[}\left(a+1\right)\left(b+1\right)\left(c+1\right)\text{]}^2\ge64\)
Mà a,b,c dương\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\left(\text{đ}pcm\right)\)
Thay \(a=b=c=0,25\)thì ta có:
\(\dfrac{1}{\sqrt{0,25}}+\dfrac{1}{\sqrt{0,25}}+\dfrac{2\sqrt{2}}{\sqrt{0,25}}\approx9,657\)
\(\dfrac{8}{0,25+0,25+0,25}\approx10,667\)
Vậy đề sai
Đặt \(a=\dfrac{kx}{y};b=\dfrac{ky}{z};c=\dfrac{kz}{x}\Rightarrow abc=k^3\)
Ta có: \(BDT\Leftrightarrow\dfrac{yz}{kx\left(ky+z\right)}+\dfrac{xz}{ky\left(kz+x\right)}+\dfrac{xy}{kz\left(kx+y\right)}\ge\dfrac{3}{1+k^3}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\dfrac{y^2z^2}{kxyz\left(ky+z\right)}+\dfrac{x^2z^2}{kxyz\left(kz+x\right)}+\dfrac{x^2y^2}{kxyz\left(kx+y\right)}\)
\(\ge\dfrac{\left(xy+yz+xz\right)^2}{xyz\left(x+y+z\right)k\left(k+1\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{xyz\left(x+y+z\right)k\left(k+1\right)}=\dfrac{3}{k\left(k+1\right)}\)
Cần chứng minh \(\dfrac{3}{k\left(k+1\right)}\ge\dfrac{3}{1+k^3}\)
\(\Leftrightarrow\dfrac{3\left(k-1\right)^2}{k\left(k+1\right)\left(k^2-k+1\right)}\ge0\) (luôn đúng)
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=1+\dfrac{a}{b}+1+\dfrac{b}{a}=2+\dfrac{a}{b}+\dfrac{b}{a}\)
Áp dụng BĐT Cauchy cho 2 số dương \(\dfrac{a}{b}\) và \(\dfrac{b}{a}\), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
Vậy: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Dấu ''='' xảy ra khi và chỉ khi a=b
P/S: Nếu chưa học Cauchy thì xét hằng đẳng thức \(\left(a-b\right)^2\ge0\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+2b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng với mọi a;b)
Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+1+\frac{b}{a}=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)
ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)
nên \(2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
\(\Rightarrow dpcm\)
1: =>4a^3+4b^3-a^3-3a^2b-3ab^2-b^3>=0
=>a^3-a^2b-ab^2+b^3>=0
=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0
=>(a+b)(a-b)^2>=0(luôn đúng)
2: \(a^4+b^4=\dfrac{a^4}{1}+\dfrac{b^4}{1}>=\dfrac{\left(a^2+b^2\right)^2}{1}=\dfrac{1}{2}\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}\right)^2\)
=>\(a^4+b^4>=\dfrac{1}{2}\left(\dfrac{\left(a+b\right)^2}{2}\right)^2=\dfrac{\left(a+b\right)^4}{8}\)