Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+2b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng với mọi a;b)
Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+1+\frac{b}{a}=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)
ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)
nên \(2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
\(\Rightarrow dpcm\)
a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)
CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)
c/CM: \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)
d/Ta xét hiệu: \(a^4-4a+3\)
\(=a^4-2a^2+1+2a^2-4a+2\)
\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)
Suy ra BĐT luôn đúng
e/Ta xét hiệu:( Làm nhanh)
\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)
f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)
\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)
Mà \(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)
Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)
g/Làm rồi..xem lại trong trang cá nhân
h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)
\(=a^5b+ab^5-a^2b^4-a^4b^2\)
\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)
\(=ab\left(a^2-b^2\right)\left(a-b\right)\)
\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)
Suy ra ĐPCM
a.
Xét hiệu:
\(a^3+b^3-ab\left(a+b\right)=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
\(=a^2-ab+b^2-ab=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\ge0\)
=> BĐT luôn đúng
b.
Xét hiệu:
\(a^4+b^4-a^3b-ab^3=\left(a^4-a^3b\right)-\left(b^4-ab^3\right)\)
\(=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a^3-b^3\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)\)
\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
=> BĐT luôn đúng
a)
\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrowđpcm\)
b)
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-ab^3+b^4-a^3b\ge0\)
\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrowđpcm\)
c)
\(\left(a+1\right)\left(b+1\right)\ge\left(\sqrt{ab}+1\right)^2\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)-\left(\sqrt{ab}+1\right)^2\ge0\)
\(\Leftrightarrow1+b+a+ab-ab-2\sqrt{ab}-1\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Dấu bằng xảy ra khi \(a=b\)
d)
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)
Áp dụng bất đẳng thức AM-GM ta được
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}\)
\(\Leftrightarrow\dfrac{a^3}{b}+ab\ge2a^2\)
Tương tự ta được
\(\dfrac{b^3}{c}+bc\ge2b^2,\dfrac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)
Mặt khác ta có:\(a^2+b^2+c^2\ge ab+bc+ac\) (hệ quả bất đẳng thức AM-GM)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)
Dấu bằng xảy ra khi \(x=y=z;x,y,z>0\)
Ta có
\(a^4+b^4+c^4-abc\left(a+b+c\right)=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)-abc\left(a+b+c\right)\)
\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab+bc+ac\right)^2-2a^2bc-2ab^2c-2abc^2\right]-a^2bc-ab^2c-abc^2\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ac\right)^2+4a^2bc+4ab^2c+4abc^2-a^2bc-ab^2c-abc^2\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\right]^2-2\left(ab+bc+ac\right)^2+abc\left(4a+4b+4c-a-b-c\right)\)
\(=\left(a+b+c\right)^4-2\left(a+b+c\right)^2.2\left(ab+bc+ac\right)+4\left(ab+bc+ca\right)^2-2\left(ab+bc+ac\right)^2+abc\left(3a+3b+3c\right)\)
\(=\left(a+b+c\right)^4-4\left(a+b+c\right)^2\left(ab+bc+ca\right)+2\left(ab+bc+ac\right)^2+3abc\ge0\)
Ap dung BDt co si ta co
\(a^4+b^4\ge2a^2b^2\)
\(b^4+c^4\ge2b^2c^2\)
\(c^4+a^4\ge2a^2c^2\)
=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)
Lai co \(a^2b^2+b^2c^2\ge2ab^2c\)
\(b^2c^2+c^2a^2\ge2abc^2\)
\(c^2a^2+a^2b^2\ge2a^2bc\)
=> \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(2)
Từ (1) va (2) => \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
b/ \(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Leftrightarrow0< 1\) (hiển nhiên đúng)
d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(m=n=1\)
e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Ta có : \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)=ab+\dfrac{1}{ab}+\dfrac{a}{b}+\dfrac{b}{a}\)
\(=\left(ab+\dfrac{1}{16ab}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{15}{16ab}\)
Áp dụng BĐT Cô - si có
\(ab+\dfrac{1}{16ab}\ge2\sqrt{ab\cdot\dfrac{1}{16ab}}=\dfrac{1}{2}\)
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Có : \(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow16ab\le4\Rightarrow\dfrac{15}{16ab}\ge\dfrac{15}{4}\)
Do đó \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)\ge2+\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=1+\dfrac{a}{b}+1+\dfrac{b}{a}=2+\dfrac{a}{b}+\dfrac{b}{a}\)
Áp dụng BĐT Cauchy cho 2 số dương \(\dfrac{a}{b}\) và \(\dfrac{b}{a}\), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
Vậy: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Dấu ''='' xảy ra khi và chỉ khi a=b
P/S: Nếu chưa học Cauchy thì xét hằng đẳng thức \(\left(a-b\right)^2\ge0\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Toán lớp 8