K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=192\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=192\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3-192=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-195=0\)

\(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+13\right)=0\)

=>(x+5)(x-3)=0

=>x=3 hoặc x=-5

25 tháng 7 2021

1. A

2. C 

Câu 1: A

Câu 2: C

Câu 2: 

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)

6 tháng 6 2020

a, Câu này dễ quá bỏ qua nha :)

b, Ta có : \(\Delta^,=b^{,2}-ac=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)

- Để phương trình có 2 nghiệm phân biết thì \(\Delta^,>0\)

=> \(m< 3\)

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{matrix}\right.\)

- Để \(x^2_1+x^2_2=3\left(x_1+x_2\right)\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)

<=> \(4^2-2\left(m+1\right)=3.4=12\)

<=> \(-2\left(m+1\right)=-4\)

<=> \(m+1=2\)

<=> \(m=1\left(TM\right)\)

Vậy ....

6 tháng 5 2023

Theo Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{3}{4}\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{4}\end{matrix}\right.\)

\(A=-2\left(x_1-2\right)\left(x_2-2\right)\)

\(=\left(-2x_1+4\right)\left(x_2-2\right)\)

\(=-2x_1x_2+4x_1+4x_2-8\)

\(=-2x_1x_2+4\left(x_1+x_2\right)-8\)

\(=-2.\left(-\dfrac{1}{4}\right)+4.\left(-\dfrac{3}{4}\right)-8\)

\(=\dfrac{1}{2}-3-8\)

\(=\dfrac{1}{2}-11\)

\(=-\dfrac{21}{2}\)

a: 3x^2-4x+1=0

a=3; b=-4; c=1

Vì a+b+c=0 nên phương trình có hai nghiệm là:

x1=1 và x2=c/a=1/3

b: -x^2+6x-5=0

=>x^2-6x+5=0

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm là;
x1=1; x2=5/1=5

a: =>4x-3x=1-2

=>x=-1

b: =>3x=12

=>x=4

c: =>2(x^2-6)=x(x+3)

=>2x^2-12-x^2-3x=0

=>x^2-3x-12=0

=>\(x=\dfrac{3\pm\sqrt{57}}{2}\)