K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=192\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=192\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3-192=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-195=0\)

\(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+13\right)=0\)

=>(x+5)(x-3)=0

=>x=3 hoặc x=-5

13 tháng 1 2017

\(y\left(y-4\right)=192\Leftrightarrow y^2-4y+4=196\)\(\Leftrightarrow\left(y-2\right)^2=196=14^2\)

\(\orbr{\begin{cases}y-2=14\\y-2=-14\end{cases}\Rightarrow\orbr{\begin{cases}y=16\\y=-12\left(loai\right)\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)=4\\\left(x+1\right)=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

1, bạn làm hai cái mũ 4 ra là làm đc

2) Ta có : x4 - x3 - x + 1 = 0

<=> x3(x - 1) - (x - 1) = 0 

<=> (x - 1)(x3 - 1) = 0 

<=> (x - 1)(x - 1)(x2 + x + 1) = 0 

<=> (x - 1)2(x2 + x + 1) = 0

<=> x - 1 = 0 (vì x2 + x + 1 > 0 với mọi x)

<=> x = 1

3 tháng 5 2017

a. (3x-4)2=9(x-1)(x+1)

<=> 9x2-24x+16=9x2-9

<=> -24x=-25

<=> x=\(\dfrac{25}{24}\)

Vậy S=\(\left\{\dfrac{25}{24}\right\}\)

b. (4x-5)2-4(x-2)2=0

<=> (4x-5)2-(2x-4)2=0

<=> (4x-5-2x+4)(4x-5+2x-4)=0

<=> (2x-1)(6x-9)=0

<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)

3 tháng 5 2017

c. |x2-x|= -2x

Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

=> x2-x= -2x

<=> x2-x+2x=0

<=> x2+x=0

<=> x(x+1)=0

<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

=> x-x2= -2x

<=> x-x2+2x=0

<=> 3x-x2=0

<=> x(3-x)=0

x=0 (thỏa mãn điều kiện x<1)

hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

Vậy S=\(\left\{0\right\}\)

d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

ĐKXĐ: \(x\ne\pm3\)

Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

=> x2+6x+9-48x3=x2-6x+9

<=> 12x-48x3=0

<=> 12x(1-4x2)=0

<=> 12x(1-2x)(1+2x)=0

<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{0;\pm0,5\right\}\)

4 tháng 5 2017

a ) ( 3x - 4 )2 = 9 (x-1)(x+1)

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9

\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16

\(\Leftrightarrow\) -24x = -24

\(\Leftrightarrow\) x = 1

Vậy phương trình có nghiệm x = 1 .

25 tháng 2 2018

\(\left(x^2-1\right)\left(x^2+4x+3\right)=192\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=192\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=192\)

\(\text{Đặt }x^2+2x+1=a\left(a\ge0\right)\)

\(\Rightarrow a\left(a-4\right)=192\)

\(\Leftrightarrow\left(a+12\right)\left(a-16\right)=0\)

\(\Rightarrow a=16\)

\(\Rightarrow x^2+2x+1=16\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

•••••••••••••••••••••••••••••••••••

\(x^4+3x^3+4x^2+3x+1=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(x^3+2x^2+x\right)+\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(\Rightarrow x=-1\)

25 tháng 2 2018

3) x4 + 3x3 + 4x2 + 3x + 1 = 0

x4 + x3 + 2x3 + 2x2 + 2x2 + 2x + x + 1 = 0

x3( x + 1) + 2x2( x + 1) + 2x( x + 1) + x + 1 = 0

( x + 1)( x3 + 2x2 + 2x + 1 ) = 0

( x + 1)[ ( x + 1)( x2 - x + 1) + 2x( x + 1) ] = 0

( x + 1)( x + 1)( x2 - x + 1 + 2x ) = 0

( x + 1)2( x2 + x + 1) = 0

Ta thấy : x2 + x + 1 = \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

<=> x + 1 = 0

<+> x = -1

Vậy,...

29 tháng 1 2017

a) => 8x^3+12x^2+6x+28=0

=> 8x^3+16x^2-4x^2-8x+14x+28=0

=>8x^2(x+2)-4x(x+2)+14(x+2)=0

=>(x+2)(8x^2-4x+14)=0

=>x=-2 hoặc x=0.25

1 tháng 3 2017

Đại số lớp 8

21 tháng 8 2020

a/\(\left(4x-1\right)\left(x+5\right)=x^2-25\Leftrightarrow4x^2+20x-x-5=x^2-25\Leftrightarrow3x^2+19x+20\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\-5\end{matrix}\right.\)

b/

\(2x^3-6x^2=x^2-3x\Leftrightarrow2x^3-6x^2-x^2+3x=0\Leftrightarrow2x^2\left(x-3\right)-x\left(x-3\right)=0\Leftrightarrow\left(2x^2-x\right)\left(x-3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}\\3\\0\end{matrix}\right.\)

c/\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left[\left(x^2+6x+9\right)x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\frac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3+6x^2+\frac{35}{4}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

d/\(\left(x-1\right)^2=\left(2x+5\right)^2\Leftrightarrow\left(x-1\right)^2-\left(2x+5\right)^2=0\Leftrightarrow\left(x-1+2x+5\right)\left(x-1-2x-5\right)=0\Leftrightarrow\left(3x+4\right)\left(-x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+4=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\0\\-6\end{matrix}\right.\)