Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-1\right)\left(x^2+4x+3\right)=192\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=192\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=192\)
\(\text{Đặt }x^2+2x+1=a\left(a\ge0\right)\)
\(\Rightarrow a\left(a-4\right)=192\)
\(\Leftrightarrow\left(a+12\right)\left(a-16\right)=0\)
\(\Rightarrow a=16\)
\(\Rightarrow x^2+2x+1=16\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
•••••••••••••••••••••••••••••••••••
\(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(x^3+2x^2+x\right)+\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Rightarrow x=-1\)
3) x4 + 3x3 + 4x2 + 3x + 1 = 0
x4 + x3 + 2x3 + 2x2 + 2x2 + 2x + x + 1 = 0
x3( x + 1) + 2x2( x + 1) + 2x( x + 1) + x + 1 = 0
( x + 1)( x3 + 2x2 + 2x + 1 ) = 0
( x + 1)[ ( x + 1)( x2 - x + 1) + 2x( x + 1) ] = 0
( x + 1)( x + 1)( x2 - x + 1 + 2x ) = 0
( x + 1)2( x2 + x + 1) = 0
Ta thấy : x2 + x + 1 = \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
<=> x + 1 = 0
<+> x = -1
Vậy,...
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=192\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=192\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3-192=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-195=0\)
\(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+13\right)=0\)
=>(x+5)(x-3)=0
=>x=3 hoặc x=-5
a) \(x^3+3x^3+4x+4\)=0
=>\(x^3\)(x+1) + 4 ( x+1) = 0
=>(x+1)(\(^{x^3}\)+4) = 0
=>\(\hept{\begin{cases}x+1=0\\x^3+4=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-1\\x^3=-4\end{cases}}\)
Bổ đề a^3+b^3+c^3-3abc= 0
<=> (a+b+c)[a^2+b^2+c^2-ab-bc-ca]=0
<=> 1/2 .(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]=0
<=> a+b+c=0 hoặc a=b=c
Đặt u =x^2-3 , v= - (4x+6 )
Ta có u^3+v^3 +216 = 18.u.v
<=> u^3+v^3+6^3 - 3.6.uv=0
Áp dụng bổ đề
=> u=v=3 hoặc u+v+3=0
*TH1: u=v=3 => x^2-3=3 và 4x+6=-3 ( vô lý)
*TH2 : u+v+3=0 <=> x^2-3-(4x+6)+3=0 <=> x^2-4x-6=0
=> x=2+√10 hay x=2-√10
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
\(y\left(y-4\right)=192\Leftrightarrow y^2-4y+4=196\)\(\Leftrightarrow\left(y-2\right)^2=196=14^2\)
\(\orbr{\begin{cases}y-2=14\\y-2=-14\end{cases}\Rightarrow\orbr{\begin{cases}y=16\\y=-12\left(loai\right)\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)=4\\\left(x+1\right)=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)