gpt : \(\sqrt{\dfrac{x^2-2x+1}{x^2-6+9}}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(cos4x\cdot\sqrt{\dfrac{\pi^2}{9}-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\\sqrt{\dfrac{\pi^2}{9}-x^2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\\\dfrac{\pi^2}{9}-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\left(k\in Z\right)\\x=\pm\dfrac{\pi}{3}\end{matrix}\right.\)
mình nghĩ đề vậy mới làm đc :))
\(x-2\sqrt{1-x}-4\sqrt{2x+4}+10=0\)
\(\Leftrightarrow1-x-2\sqrt{1-x}+1+2x+4-4\sqrt{2x+4}+4=0\)
\(\Leftrightarrow\left(\sqrt{1-x}-1\right)^2+\left(\sqrt{2x+4}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=1\\\sqrt{2x+4}=2\end{matrix}\right.\Rightarrow x=0\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
\(ĐKXĐ:x\ne0,x-\dfrac{1}{x}\ge0\)
Chia cả hai vế của phương trình đầu cho \(x\ne0\) ta có :
\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\left(a\ge0\right)\)
Khi đó pt có dạng : \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge0\) )
\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\Rightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{5}}{2}\) ( thỏa mãn ĐKXĐ )
\(\sqrt{\dfrac{x^2-2x+1}{x^2-6x+9}}=0\) ( x # 3 )
⇔ \(\sqrt{\dfrac{\left(x-1\right)^2}{\left(x-3\right)^2}}=0\)
⇔ \(x=1\left(TM\right)\)
Vậy ,...