\(\sqrt{\dfrac{x+1}{2x}}+\sqrt{\dfrac{2x}{x+3}}=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)

Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no

(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))

=> x - 2 = 0

<=> x = 2 (nhận)

16 tháng 8 2017

\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)

\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)

TH1:

x + 3 = 0

<=> x = - 3 (loại)

TH2:

\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)

\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)

Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no

=> x - 2 = 0

<=> x = 2 (nhận)

~ ~ ~

Vậy x = 2

11 tháng 11 2017

\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)-6\sqrt{2x-5}+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}-1\right|=4\)

Đến đây lập bảng xét dấu là xong.

. . .

\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\dfrac{1}{2}\left(y+3\right)\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)

Tự làm tiếp nhé.

4 tháng 12 2017

Đặt VT là T

Áp dụng AM-GM cho 3 số dương, ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(T\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)(đpcm)

4 tháng 12 2017

\(P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{.....}+\dfrac{x+2}{....}\)

\(=\dfrac{\sqrt{x^3}+2x+2\sqrt{x}-2+x+2}{.....}=\dfrac{\sqrt{x^3}+3x+2\sqrt{x}}{....}\)

\(=\dfrac{\sqrt{x}\left(x+3\sqrt{x}+2\right)}{....}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{....}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

P/S: Chú ý điều kiện khi rút gọn, tự tìm.

12 tháng 12 2017

\(P=\dfrac{\sqrt{2x^2+y^2}}{xy}+\dfrac{\sqrt{2y^2+z^2}}{yz}+\dfrac{\sqrt{2z^2+x^2}}{xz}\)

\(P=\sqrt{\dfrac{2x^2+y^2}{x^2y^2}}+\sqrt{\dfrac{2y^2+z^2}{y^2z^2}}+\sqrt{\dfrac{2z^2+x^2}{x^2z^2}}\)

\(P=\sqrt{\dfrac{2}{y^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{2}{z^2}+\dfrac{1}{y^2}}+\sqrt{\dfrac{2}{x^2}+\dfrac{1}{z^2}}\)

\(P\ge\sqrt{\left(\dfrac{\sqrt{2}}{x}+\dfrac{\sqrt{2}}{y}+\dfrac{\sqrt{2}}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=3\)

13 tháng 12 2017

hicc , lm vậy mà còn quát con IM

25 tháng 12 2018

1. \(\dfrac{2\sqrt{3}-6}{\sqrt{8}-2}=\dfrac{2\left(\sqrt{3}-3\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{3}-3}{\sqrt{2}-1}=\dfrac{\left(\sqrt{3}-3\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{\sqrt{6}+\sqrt{3}-3\sqrt{2}-3}{2-1}=\sqrt{6}+\sqrt{3}-3\sqrt{2}-3\)

2. \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1=x+\sqrt{x}-2\sqrt{x}-1=x-\sqrt{x}-1\)

3. \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\sqrt{x}-1\)