GIUP MINH DI !
BAI 1 : CHUNG MINH RANG :
B = 1 + 3 + 32 + ......+ 399 chia het cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
cho S = 1+3+32+ 33 + 34 + .......+ 399
Tổng S có tổng cộng 100 số hạng
S = 1+3+32+ 33 + 34 + .......+ 399
= (1+3) +(32+ 33) + (34 +35) .......(388+ 399 ) có 50 nhóm
= 4 + 32.(1+3)+34(1+3)+........+388(1+3)
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
b)
= (1+3 + 32+ 33) + (34 +35+36+37) .......(386+387+388+ 399 ) có 100:4 = 25 nhóm
= (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33)
= 40+ 34.40 .......386.40
= 40 ( 1 +34+ 38+....+386) chia hết cho 40
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
abcd \(⋮\) 101
<=> abcd = 101k (k > 10 ; k \(\in\)N)
<=> ab = cd
=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)
* Chú thích (ko ghi vào)
\(⋮\) là dấu chia hết
đcpm là điều phải chứng minh
Xét hiệu:A=9.(7x+4y)-2.(13x+18y)
Suy ra:A=63x+36y-26x-36y
ThìA=37x
Vậy A chia hết cho 37
Vì 7x+4y chia hết cho 37
Nên9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
Vậy2.(13x+18y) chia hết cho 37
Do 2 và 37 nguyên tố cùng nhau
Nên13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Chúc bạn học tốt tran thi nguyet nga
\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)
\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
B= ( 1+3+32+33)+....+(396+397+398+399)
B=(1+3+32+33)+......+396x(1+3+32+33)
B=40x1+......+396x40
B=40x(1+....+396)
Vì 40 chia hết cho 40 =)40x(1+....+396) chia hết cho 40
Hay B chia hết cho 40
Vậy B chia hết cho 40