Chứng minh 2x^2-2xy+y^2+2x+6>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+y^2+2xy-4x+9=\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)+5\)
\(=\left(x+y\right)^2+\left(x-4\right)^2+5\ge5\)
Suy ra dieu phai cm
\(2x^2+y^2+2xy-4x+9\)
\(=x^2+2xy+y^2+x^2-4x+4+5\)
\(=\left(x+y\right)^2+x^2-2.2.x+4+5\)
\(=\left(x+y\right)^2+\left(x-2\right)^2+5\)
\(\left(x+y\right)^2>0;\left(x-2\right)^2>0;5>0\)
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2+5>0\)
\(\Rightarrow2x^2+y^2+2xy-4x+9>0\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(3x^2+5y^2-2x-2xy+1\)
\(=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+x^2+4y^2\)
\(=\left(x-1\right)^2+\left(x-y\right)^2+x^2+4y^2\ge0\forall x:y\)
Do dấu bằng không xảy ra \(\Rightarrow\left(x+1\right)^2+\left(x-y\right)^2+x^2+4y^2>0\forall x:y\)
2)
\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)
\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)
Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).
Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).
\(B=2a^2+b^2+c^2-ab+ac+bc\)
\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)
\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)
\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)
Dấu \(=\)khi \(a=b=c=0\).
Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).
1.
a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm)
suy ra đpcm
b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)
c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)
d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)
\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)
\(x^2+2y^2-2xy+2x-4y+3\)
\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)
Ta có:\(2x^2+2xy+4x+y^2+8\)
\(=x^2+4x+4+x^2+2xy+y^2+4\)
\(=\left(x+2\right)^2+\left(x+y\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)
Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y
2x^2+2xy+4x+y^2+8
= x^2+2xy+y^2 +x^2 + 4x+4+4
=(x+y)^2 + (x+2)^2 +4
Vì (x+y)^2 và (x+2)^2 đều >=0
Nên (x+y)^2+(x+2)^2+4 >= 4 >0
Vậy.........n.n
a)\(2x^2+3x+5=0\)
\(\Leftrightarrow4x^2+6x+10=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)
b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )
c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)
Vậy PT vô nghiệm
a: 2x^2+3x+5=0
=>x^2+3/2x+5/2=0
=>x^2+2*x*3/4+9/16+31/16=0
=>(x+3/4)^2+31/16=0(vô lý)
b: x^2-2x+y^2-4y+6=0
=>x^2-2x+1+y^2-4y+4+1=0
=>(x-1)^2+(y-2)^2+1=0(vô lý)
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
ta có :
\(2x^2-2xy+y^2+2x+6=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+5\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+5\ge5>0\)
vậy ta có đpcm