K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=4-2-2\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

Với mọi x, y ta luôn có \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\)

=> \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2\ge0\)

\(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=0\\\dfrac{y^2-1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1;x=-1\\y=1;y=-1\end{matrix}\right.\)

Vậy....

mk giải luôn đó nha

17 tháng 6 2018

Giải:

Áp dụng BĐT AM-GM cho hai số dương, ta có:

\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(y^2+\dfrac{1}{y^2}\ge2\sqrt{y^2.\dfrac{1}{y^2}}=2\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}\ge4\)

Dấu "=" xảy ra khi:

\(x=y=\pm1\)

Vậy ...

6 tháng 2 2022

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)

Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)

Lấy (4) trừ (3) ta có:

\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)

19 tháng 1 2023

\(\left\{{}\begin{matrix}y-\dfrac{2}{5}=\dfrac{x}{50}\\y+1=\dfrac{x}{40}\end{matrix}\right.\)

`=> y -2/5 -y-1 = x/50 -x/40`

`<=> -7/5 = x(1/50-1/40)`

`=> x= -7/5 : (1/50 -1/40) `

`<=> x =280`

`=> y +1 =280/40 = 7`

`<=> y = 6`

Vậy.....

23 tháng 1 2022

ĐK:   \(x\ne0\) ; \(y\ne0\)

Hệ phương trình tương đương với:

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=8\end{matrix}\right.\)

Đặt  \(S=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)\)

         \(P=\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\)

Mà   \(S^2\ge4P\)

Ta có:      \(\left\{{}\begin{matrix}S=4\\S^2-2P=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=4\\P=4\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

          

NV
29 tháng 3 2021

ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)

\(\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Đặt $\frac{1}{x-y+2}=a;\frac{1}{x+y-1}=b$ thì HPT trở thành cơ bản:
\(\left\{\begin{matrix} 14a-10b=9\\ 3a+2b=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 14a-10b=9\\ 15a+10b=20\end{matrix}\right.\)

$\Rightarrow (14a-10b)+(15a+10b)=9+20$

$\Leftrightarrow 29a=29\Leftrightarrow a=1$.

$b=\frac{4-3a}{2}=\frac{1}{2}$

Vậy: \(\left\{\begin{matrix} \frac{1}{x-y+2}=1\\ \frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y+2=1\\ x+y-1=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x-y=-1\\ x+y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)

11 tháng 8 2023

Bạn xem kỹ lại đề có đúng không?

Y
2 tháng 2 2019

\(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2=0\\\left(y-\dfrac{1}{y}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)

a)Ta có:

 \(\left(x-3,5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)

\(\Rightarrow x-3,5=y-\dfrac{1}{10}=0\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}=0,1\end{matrix}\right.\)

b) Ta có:

\(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=\dfrac{-6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)

 

b: ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{7}\\5x=\dfrac{-13}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)

5 tháng 4 2017

Quy đồng mẫu,cho tử =0