Giải hộ e đi ạ. Tìm GTLN và GTNN của hàm số sau:
y= 1 - 3cos^2 3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=sin^3x+2sin^2x+sinx-2\)
đặt \(t=sinx\) với \(t\in\left[-1;1\right]\)
pt \(\Leftrightarrow\)\(y=t^3+2t^2+t-2\)
\(y'=3t^2+4t+1\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{1}{3}\end{matrix}\right.\)
x | -1 -1/3 1 |
y' | 0 - 0 + |
y | -2 - -58/27 + 2 |
vậy GTLN của y = 2 với t=1 \(\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
GTNN của y=-58/27 với \(t=-\dfrac{1}{3}\Leftrightarrow sinx=-\dfrac{1}{3}\Leftrightarrow x=sin^{-1}\left(-\dfrac{1}{3}\right)\)
\(0\le sin^23x\le1\Rightarrow3\le y\le4\)
\(y_{min}=3\) khi \(sin^23x=1\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(y_{max}=4\) khi \(sin^23x=0\Rightarrow x=\dfrac{k\pi}{3}\)
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
vì -1 ≤ cos(3x) ≤ 1 nên 0 ≤ cos2(3x) ≤ 1
⇒ max = 1 khi cos2(3x) = 0 ⇔ x = \(\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
min = -2 khi cos2(3x) = 1 ⇔ \(\left[{}\begin{matrix}cos\left(3x\right)=-1\\cos\left(3x\right)=1\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\\x=\dfrac{k2\pi}{3}\end{matrix}\right.\)