K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Lời giải:

Ta có:

\(M=x^2-5x+y^2+xy-4y+2014\)

\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2014-M)=0\)

Coi đây là pt bậc 2 ẩn $x$. Vì pt xác định nên:

\(\Delta=(y-5)^2-4(y^2-4y+2014-M)\geq 0\)

\(\Leftrightarrow 4M\geq 3y^2-6y+8031\)

\(3y^2-6y+8031=3(y-1)^2+8028\geq 8028\)

\(\Rightarrow 4M\geq 8028\Leftrightarrow M\geq 2007\)

Vậy $M_{\min}=2007$ khi $y-1=0$ hay $y=1$ kéo theo $x=2$

23 tháng 11 2016

M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)

M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)

M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)

GTNN=(.....)

tai: y=5

2x+5-5=0=> x=0

28 tháng 4 2015

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Giá trị min đạt được khi $y=1$ và $x=2$

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:

PT \(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2023-M)=0(*)\)

Coi đây là pt bậc 2 ẩn $x$

Vì biểu thức $M$ tồn tại đồng nghĩa với $(*)$ có nghiệm nên:

\(\Delta=(y-5)^2-4(y^2-4y+2023-M)\geq 0\)

\(\Leftrightarrow 4M\geq 3y^2-6y+8067\)

Mà: $3y^2-6y+8067=3(y-1)^2+8064\geq 8064$

$\Rightarrow 4M\geq 8064\Rightarrow M\geq 2016$

Vậy $M_{\min}=2016$

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

6 tháng 6 2018

Điều kiện có 2 nghiệm phân biệt tự làm nha

Theo vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)

\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

Làm nốt nhé

6 tháng 6 2018

Câu 1:

M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)

=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)

=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)

\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)

22 tháng 12 2016

trước tiên bạn nên đưa về dạng tổng hai bình phương 

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4

8 tháng 3 2017

các bạn lên google xem xxx nhé