Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)
M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)
M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)
GTNN=(.....)
tai: y=5
2x+5-5=0=> x=0
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
Lời giải:
PT \(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2023-M)=0(*)\)
Coi đây là pt bậc 2 ẩn $x$
Vì biểu thức $M$ tồn tại đồng nghĩa với $(*)$ có nghiệm nên:
\(\Delta=(y-5)^2-4(y^2-4y+2023-M)\geq 0\)
\(\Leftrightarrow 4M\geq 3y^2-6y+8067\)
Mà: $3y^2-6y+8067=3(y-1)^2+8064\geq 8064$
$\Rightarrow 4M\geq 8064\Rightarrow M\geq 2016$
Vậy $M_{\min}=2016$
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
Có \(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)
\(\Rightarrow|x+y|\ge2\)
Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)
Xét x = y = 1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)
\(M=\frac{3}{4}\)
Xét x = y = -1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)
\(M=\frac{7}{4}+3^{2017}\)
Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)
Có |x+y| lớn hơn hoặc bằng
|x|+|y| dấu bằng sảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 => |x+y|=|x|+|y| (1)
Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0
=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)
Từ (1) và (2)
=>|x+y| lớn hơn hoặc bằng 2
=>MIN |x+y|=2
Dấu bằng sảy ra
<=>|x+y|=2
Hay |x|+|y|=\(2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)
Mà |x+y|=2
TH1: x+y=2=>x=y=1
Thay vào M ta tính được M=3/4
TH2:x+y=-2 => x=y=-1
Thay vào M ta được
M=3/4
Vậy: M=3/4
A=x2+y2+xy-5x-4y+2002
2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961
2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)
Lời giải:
Ta có:
\(M=x^2-5x+y^2+xy-4y+2014\)
\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2014-M)=0\)
Coi đây là pt bậc 2 ẩn $x$. Vì pt xác định nên:
\(\Delta=(y-5)^2-4(y^2-4y+2014-M)\geq 0\)
\(\Leftrightarrow 4M\geq 3y^2-6y+8031\)
Mà \(3y^2-6y+8031=3(y-1)^2+8028\geq 8028\)
\(\Rightarrow 4M\geq 8028\Leftrightarrow M\geq 2007\)
Vậy $M_{\min}=2007$ khi $y-1=0$ hay $y=1$ kéo theo $x=2$