K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Áp dụng BĐT Bunhiacopski ta có :

\(\left(1.x+1.y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2.8=16\)

=> \(x+y\le4\)

Dấu " =" xảy ra khi \(x=y=2\).

NV
16 tháng 5 2019

\(x^2+y^3+y^2\ge x^3+y^4+y^2\ge x^3+2y^3\Rightarrow x^2+y^2\ge x^3+y^3\)

Lại có \(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)\left(x^2+y^2\right)\Rightarrow x^2+y^2\le x+y\)

\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le2\Rightarrow x^3+y^3\le2\)

Dấu "=" xảy ra khi \(x=y=1\)

2 tháng 6 2018

Nhầm CMR x + y =< 4 leuleu

2 tháng 6 2018

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)

\(x+y\le\sqrt{16}\)

⇔ x + y ≤ 4

Đẳng thức xảy ra khi : x = y = 2

4 tháng 2 2020

Dễ thây \(x+y\ge0\)ta có

\(x+y\ge x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow x+y\le2\)

2 tháng 6 2018

ta có \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow x^2+y^2\ge2xy\Rightarrow2xy\le8\)

\(\Rightarrow x^2+y^2+2xy\le8+8=16\Rightarrow\left(x+y\right)^2\le16\Rightarrow-4\le x+y\le4\)

đề bài thiếu -4 =<  x + y

4 tháng 6 2018

\(2xy< =x^2+y^2=8\Rightarrow x^2+2xy+y^2=\left(x+y\right)^2< =8+8=16\Rightarrow x+y< =4\)

30 tháng 7 2018

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

19 tháng 11 2015

tick mình xong mình giải cho

19 tháng 11 2015

tick mình xong mình giải cho