\(x^2+y^2=8\). CMR x + y = 4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Nhầm CMR x + y =< 4 leuleu

2 tháng 6 2018

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)

\(x+y\le\sqrt{16}\)

⇔ x + y ≤ 4

Đẳng thức xảy ra khi : x = y = 2

3 tháng 6 2018

Áp dụng BĐT Bunhiacopski ta có :

\(\left(1.x+1.y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2.8=16\)

=> \(x+y\le4\)

Dấu " =" xảy ra khi \(x=y=2\).

21 tháng 2 2019

Sai đề kìa . Đề đúng đây :

\(\dfrac{x}{1998}=\dfrac{y}{1999}=\dfrac{z}{2000}\)
Đặt \(\dfrac{x}{1998}=\dfrac{y}{1999}=\dfrac{z}{2000}=k\left(k>0\right)\)

Ta có :

x = 1998k ; y = 1999k ; z =2000k

Ta có :

\(\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k\) (*)

\(8\left(x-y\right)^2\cdot\left(y-z\right)=8\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)

\(=8\left(-1\right)^2\cdot\left(-1\right)=-8\) (**)

Từ (*) và (**) suy ra ĐPCM

8 tháng 12 2018

ĐẶT\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow x=1998k,y=1999k,z=2000k\)

\(\Rightarrow\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k^3\)

\(8.\left(x-y\right)^2.\left(y-z\right)=8.\left(1998k-1999k\right)^2.\left(1999k-2000k\right)=-8k^3\)

=> đpcm

4 tháng 6 2018

\(2xy< =x^2+y^2=8\Rightarrow x^2+2xy+y^2=\left(x+y\right)^2< =8+8=16\Rightarrow x+y< =4\)

26 tháng 8 2018

Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow x=k\)

     \(y=2k\)

     \(z=3k\)

Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)

\(=6k.\frac{6}{k}\)

\(=\frac{36k}{k}=36\)

=.= hok tốt!!

26 tháng 8 2018

Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

Do đó  \(x=k;y=2k;z=3k\)

Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có 

\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)

\(=6k.\frac{6+12+18}{6k}\)

\(=\frac{6k.\left(6+12+18\right)}{6k}\)

\(=36\)

Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)

sai đề bạn ơi

26 tháng 8 2018

sửa lại đề: CMR: ( x+y+z ).\(\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)=36\)

23 tháng 5 2018

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}\)

\(\Rightarrow\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}\)

\(\Rightarrow\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\)

\(\Rightarrow\left(\frac{x-z}{-2}\right)^3=\left(\frac{x-y}{-1}\right)^2.\left(\frac{y-z}{-1}\right)\)

\(\Rightarrow\frac{\left(x-z\right)^3}{\left(-2\right)^3}=\frac{\left(x-y\right)^2}{\left(-1\right)^2}.\frac{\left(y-z\right)}{-1}\)

\(\Rightarrow\left(x-z\right)^3=8.\left(x-y\right)^2.\left(y-z\right)\)