Cho ABC cân tại A , KẻAH⊥BC(H∈BC) ,biết AB =25cm , BC = 30cm.
a) Từ H kẻHI⊥AB(I∈AB) và kẻ ID⊥AH(D∈AH)
Chứng minh rằng: IA.IB = AH.DH
b) Tính AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
???Inào,D nào cả cạnh AD nữa
bạn thử xem lại đề bài đi nhé
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{AIB}=\widehat{AIC}\)(hai góc tương ứng)
\(\Leftrightarrow4\cdot\widehat{AIB}=4\cdot\widehat{AIC}\)(đpcm)
b) Ta có: IB=IC(cmt)
mà IB+IC=BC(I nằm giữa B và C)
nên \(IB=IC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABI vuông tại I, ta được:
\(AB^2=IB^2+AI^2\)
\(\Leftrightarrow AI^2=AB^2-BI^2=5^2-3^2=16\)
hay AI=4(cm)
Vậy: AI=4cm
a,xét ΔAHB VÀ ΔAHC
AB=AC(gt)
góc AHB= góc AHC=900
AH:cạnh chung
⇒ΔAHB=ΔAHC(cạnh huyền- góc nhọn)
⇒AH là đường trung tuyến của ΔABC
b,Ta có HB=1/2 BC
➩HB =1/2*BC
⇒HB=1/2*8
⇒HB=4(cm)
xét ΔAHBcó góc AHB=900
AB2=AH2+HB2(định lý py -ta- go)
⇒AH2=AB2-HB2
⇒ AH2= 52- 42
⇒AH2=25-16
⇒AH2=9
⇒AH2=(3)2=(-3)2
⇒AH=3(cm)
a: Xét ΔHIA vuông tại I có ID là đường cao
nên \(IH^2=HA\cdot HD\)
mà \(IH^2=IA\cdot IB\)
nên \(IA\cdot IB=AH\cdot DH\)
b: BH=BC/2=15cm
=>AH=20cm
\(AI=\dfrac{AH^2}{AB}=\dfrac{20^2}{25}=16\left(cm\right)\)