K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

bn lm hộ mik vs

20 tháng 1 2022

okee chờ tí

9 tháng 3 2020

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

9 tháng 3 2020

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

25 tháng 1 2016

HB=HC

AH CẠNH CHUNG

AB=AC (CẠNH HUYỀN)

DO ĐÓ:AHB=AHC (C-C-C)

MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!

12 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) (đpcm)

b/ Ta có \(\Delta AHB\)\(\Delta AHC\) (cm câu a) => HB = HC (hai cạnh tương ứng) => H là trung điểm của BC

=> BH = \(\frac{BC}{2}\)\(\frac{8}{2}\)= 4 (cm)

Ta có \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lí Pitago)

=> AH2 = AB2 - HB2

=> AH2 = 52 - 42

=> AH2 = 25 - 16

=> AH2 = 9

=> AH = \(\sqrt{9}\)

=> AH = 3

c/ \(\Delta AHB\)vuông tại H và \(\Delta MHB\)vuông tại H có: AH = MH (gt)

Cạnh HB chung

=> \(\Delta AHB\)vuông = \(\Delta MHB\)vuông (cạnh huyền - cạnh góc vuông) => AB = MB (hai cạnh tương ứng)

=> \(\Delta ABM\)cân tại B (đpcm)

d/ Ta có \(\Delta AHB\)\(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng) (1)

Ta có \(\Delta AHB\)\(\Delta MHB\)(cm câu c) => \(\widehat{M}=\widehat{BAH}\)(hai góc tương ứng) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{CAH}\)ở vị trí so le trong => BM // AC (đpcm)

24 tháng 4 2020

A B C H

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có 

\(AB=AC\left(gt\right)\)

\(AH\)chung

=> \(\Delta AHB=\Delta AHC\)( cạnh huyền - cạnh góc vuông )

=> \(HB=HC\)( hai cạnh tương ứng )

=> H là trung điểm của BC ( đpcm )

b) H là trung điểm của BC => \(HB=HC=\frac{BC}{2}=\frac{8}{2}=4cm\)

Áp dụng định lí Pytago cho tam giác vuông AHC ta có :

\(AC^2=AH^2+HC^2\)

\(5^2=AH^2+4^2\)

\(AH^2=5^2-4^2=9\)

\(AH=\sqrt{9}=3cm\)

Vậy AH = 3cm , CH = 4cm

24 tháng 4 2020

Hình tự vẽ nha

a)Vì tam giác ABC cân tại A(gt)

=>AH vừa là đường cao, vừa là đường trung tuyến

=>H là trung điểm của BC

b)Vì H là trung điểm của BC(cmt)

=>BH=HC=BC/2=8/2=4(cm)

Ta có tam giác ACH vuông tại H(vì AH là đường cao)

Áp dụng định lý Pi-ta-go ta có:

     AC^2=AH^2 + HC^2

=>5^2=AH^2 + 4^2

=>AH^2=25-16=9=>AH=3(cm)

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

22 tháng 2 2020

a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C

Xét tam giác ABH và tam giác ACH

Có: AB=AC (Vì tam giác ABC cân tại A)

     AH chung

HB=HB (GT)

suy ra tam giác ABH = tam giác ACH (c.c.c) (1)

b) Vì HB=HC=BC/2=6/2=3 (cm)

Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)

mà góc AHB=góc AHC=180 độ 

suy ra góc AHB=góc AHC=90 độ

Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)

suy ra 5^2=AH^2+3^2

25=AH^2+9

suy ra AH^2=16 suy ra AH=4(cm) vì AH >0

c) Xét tam giác vuông AHE và tam giác vuông AHF

có AH chung

góc HAE=góc HAF ( theo câu a)

suy ra tam giác AHE =tam giác  AHF (cạnh huyền-góc nhọn)

suy ra AE=AF suy ra A thuộc đường TT của EF  (3)

HE=HF suy ra H thuộc đường TT của EF   (4)

 từ (3) và (4) suy ra AH là đường TT của EF