Khử mẫu của biểu thức lấy căn :
A=\(\sqrt{\dfrac{2}{3}}+2\sqrt{\dfrac{3}{2}}-\sqrt{6}\)
B= \(3\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}-2\sqrt{10}\)
C= \(\sqrt{\dfrac{3a}{7}}-2\sqrt{\dfrac{7a}{3}}+\sqrt{21a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.
a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)
b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)
c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)
d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)
\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)
bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)
bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
a: \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a}\cdot\sqrt{a}-\sqrt{a}}{-\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{-\left(\sqrt{a}-1\right)}=-\sqrt{a}\)
b: \(\dfrac{2+\sqrt{3}}{2-\sqrt{7}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\)
\(=\dfrac{-\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{3}\)
\(=\dfrac{-4-2\sqrt{7}-2\sqrt{3}-\sqrt{21}}{3}\)
c: \(3xy\cdot\sqrt{\dfrac{2}{xy}}=\dfrac{3xy}{\sqrt{xy}}\cdot\sqrt{2}=3\sqrt{2}\cdot\sqrt{xy}\)
d:
\(\dfrac{3}{\sqrt[3]{3}+\sqrt[3]{2}}=\dfrac{3\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}{3+2}\)
\(=\dfrac{3}{5}\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\)
e:
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5}{2-\sqrt{3}}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\left(\sqrt{3}+1\right)-\dfrac{5\left(2+\sqrt{3}\right)}{4-3}-\dfrac{6\left(3+\sqrt{3}\right)}{6}\)
\(=2\sqrt{3}+2-10-5\sqrt{3}-3-\sqrt{3}\)
\(=-4\sqrt{3}-11\)
f:
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\)
\(=\dfrac{\sqrt{5}-1}{5-1}+\dfrac{\sqrt{9}-\sqrt{5}}{9-5}+\dfrac{\sqrt{13}-\sqrt{9}}{13-9}\)
\(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-\sqrt{9}+\sqrt{13}}{4}=\dfrac{\sqrt{13}-1}{4}\)
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\\ =\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\\ =-\sqrt{a}\\ \dfrac{2+\sqrt{3}}{2-\sqrt{7}}\\ =\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\\ =\dfrac{4+2\sqrt{7}+2\sqrt{3}+\sqrt{21}}{-3}\\\)
\(3xy\sqrt{\dfrac{2}{xy}}\\ =\sqrt{\dfrac{\left(3xy\right)^2\cdot2}{xy}}\\ =\sqrt{\dfrac{9x^2y^2\cdot2}{xy}}\\ =\sqrt{9xy\cdot2}\\ =\sqrt{18xy}\)
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5\left(\sqrt{3}+2\right)}{3-4}+\dfrac{6\left(\sqrt{3}+3\right)}{3-9}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{2}-\dfrac{5\left(\sqrt{3}+2\right)}{-1}+\dfrac{6\left(\sqrt{3}+3\right)}{-6}\\ =2\sqrt{3}+2+5\sqrt{3}+10-\sqrt{3}-3\\ =6\sqrt{3}+9\)
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\\ =\dfrac{1-\sqrt{5}}{1-5}+\dfrac{\sqrt{5}-\sqrt{9}}{5-9}+\dfrac{\sqrt{9}-\sqrt{13}}{9-13}\\ =\dfrac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}}{-4}\\ =\dfrac{1-\sqrt{13}}{-4}\)
`# gvy`
Bài 2:
\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)
\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)
\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
a: \(A=\dfrac{\sqrt{6}}{3}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{6}}{3}\)
b: \(B=\dfrac{3}{5}\sqrt{10}+\dfrac{1}{2}\sqrt{10}-2\sqrt{10}=-\dfrac{9}{10}\sqrt{10}\)
c: \(C=\dfrac{\sqrt{21}}{7}\cdot\sqrt{a}-2\cdot\dfrac{\sqrt{21}}{3}\cdot\sqrt{a}+\sqrt{21}\cdot\sqrt{a}\)
\(=\dfrac{10\sqrt{21a}}{21}\)