Cho Parabol y = x^2 và d : y = 2x +m +1 . Tìm m để d cắt P tạ 2 điểm phân biệt thỏa mãn x1^3 - x2^3 + x1x2 = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-2=0\)
\(\Leftrightarrow3x^2-2mx-4=0\)
a=3; b=-2m; c=-4
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)
=>m=9 hoặc m=-9
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-4=0\)
\(\Leftrightarrow3x^2-2mx-8=0\)
ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)
hay m=6 hoặc m=-6
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
Phương trình hoành độ giao điểm:
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)
\(\Rightarrow m=1\) (thỏa mãn)
a) Xét phương trình hoành độ giao điểm
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)
toạ độ giao điểm của d và P là no của hệ:
\(\left\{{}\begin{matrix}y=X^2\\y=2x+m+1\end{matrix}\right.\)
giải pt ra (chắc dễ mà tự giải nhé)
<=> \(\left\{{}\begin{matrix}y=x^2\\x^2-2x-m-1=0\end{matrix}\right.\)(*)
pt (*) là pt bậc 2 ẩn x có \(\Delta\)'= (-1)^2 -1.(-m-1)
=1+m+1
=m+2
để pt có 2 no pb thì \(\Delta'>0\)
<=>m+2>0
<=>m>2
Vậy pt có 2 no pb khhi m>-2
áp dụng hệ thức Vi_ét ta có
(I)\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=-m-1\end{matrix}\right.\)
ta có: x1^3 -x2^3 +x1x2=4
<=>(x1 -x2)^3 +3x1x2(x1-x2)+x1x2=4