K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

thx bạn

 

17 tháng 11 2023

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

21 tháng 11 2022

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

 

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF