Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tải ảnh xuống mới mở được hả, phiền ghê, hình em tự vẽ nha (Thực ra là chị vẽ rồi nhưng mà lại còn phải tải xuống,mệt lắm( riêng mỗi chuyện đăng bài mà tốn mấy chục phút của chị, phải nhập tận hai lần bài mà bài cuối cùng ko gửi được, bực cả mình,may mà có chụp lại màn hình)
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân
Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
a: Xét tứ giác OBDM có
góc OBD+góc OMD=180 độ
=>OBDM là tư giác nội tiếp
c: Xét ΔKOB và ΔKFE có
góc KOB=góc KFE
góc OKB=góc FKE
=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE
=>KO*KE=KB*KF
a) Xét tứ giác AOMC có
\(\widehat{CAO}\) và \(\widehat{CMO}\) là hai góc đối
\(\widehat{CAO}+\widehat{CMO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: AOMC là tứ giác nội tiếp(cmt)
nên \(\widehat{MAO}=\widehat{OCM}\)(hai góc cùng nhìn cạnh OM)
hay \(\widehat{MAB}=\widehat{OCD}\)
Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(Gt)
CA là tiếp tuyến có A là tiếp điểm(Gt)
Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
\(\Leftrightarrow\widehat{AOM}=2\cdot\widehat{COM}\)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
\(\Leftrightarrow\widehat{BOM}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)
và \(\widehat{BOM}=2\cdot\widehat{MOD}\)(cmt)
nên \(2\cdot\widehat{COM}+2\cdot\widehat{MOD}=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
mà \(\widehat{COM}+\widehat{MOD}=\widehat{COD}\)(tia OM nằm giữa hai tia OC,OD)
nên \(\widehat{COD}=90^0\)
Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét (O) có
ΔMAB nội tiếp đường tròn(M,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
Xét ΔAMB vuông tại M và ΔCOD vuông tại O có
\(\widehat{MAB}=\widehat{OCD}\)(cmt)
Do đó: ΔAMB∼ΔCOD(g-g)
⇔\(\dfrac{AM}{CO}=\dfrac{BM}{DO}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AM\cdot OD=BM\cdot OC\)(đpcm)