Cho tam giác ABC vuông tại A. Từ C vẽ đường thẳng d vuông góc với AC. Lấy điểm D thuộc d sao cho DC = AB, D và B nằm khác phía nhau với bờ là đường thẳng AC.
a) Chứng minh rằng tam giác ABC = tam giác CDA và AD // BC.
b) Gọi N là giao điểm của AC và BD. Chứng minh rằng BN = DN và AN = CN.
c) Gọi M là trung điểm BC, I là giao điểm của AM và BN. Tia CI cắt AB ở K, P là giao điểm của AC và DK. Chứng minh rằng AP = 1/3AC.
d) Kẻ NH _|_ BC tại H. Gọi Q là giao điểm của tia BA và tia HN, J là giao điểm của QC và BD. Chứng minh rằng 2CJ < 3AP.