Tính nhanh
\(\dfrac{15}{56}\) - \(\dfrac{13}{42}\) + \(\dfrac{11}{30}\) - \(\dfrac{9}{20}\) + \(\dfrac{7}{12}\) - \(\dfrac{5}{6}\) +\(\dfrac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)
B= \(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}\)
= \(\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)\)
= 1+\(\dfrac{1}{8}\)=\(\dfrac{9}{8}\)
A = \(\dfrac{3}{2}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{12}\) - \(\dfrac{9}{20}\) + \(\dfrac{11}{30}\) - \(\dfrac{13}{42}\) + \(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)
A = (1 + \(\dfrac{1}{2}\)) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\) + \(\dfrac{1}{6}\)) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)) - (\(\dfrac{1}{8}\) + \(\dfrac{1}{9}\))
A = 1 + \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = 1 - \(\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
\(A=\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)-\left(\dfrac{1}{8}+\dfrac{1}{9}\right)\)
\(A=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(A=1+\dfrac{1}{9}=\dfrac{10}{9}\)
\(=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{18-10+7}{12}+\dfrac{-27+22}{60}+\dfrac{-1}{24}\)
\(=\dfrac{15}{12}+\dfrac{-5}{60}+\dfrac{-1}{24}\)
\(=\dfrac{30-1+\left(-2\right)}{24}=\dfrac{27}{24}=\dfrac{9}{8}\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
\(\dfrac{1}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}\)
\(=\dfrac{1}{2.3}+\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{5}+\dfrac{1}{6}-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
Đề sai chắc chỗ cuối là \(\dfrac{17}{72}\)
\(S=\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}=\dfrac{1+2}{1.2}-\dfrac{2+3}{2\cdot3}+\dfrac{3+4}{3.4}-\dfrac{4+5}{4\cdot5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8\cdot9}=\dfrac{1}{2}+1-\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
\(=\dfrac{15}{7\cdot8}-\dfrac{13}{6\cdot7}+\dfrac{11}{5\cdot6}-\dfrac{9}{4\cdot5}+\dfrac{7}{3\cdot4}-\dfrac{5}{2\cdot3}+\dfrac{3}{1\cdot2}\)
\(=\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{2}\)
=1+1/8=9/8