Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3}{2}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{12}\) - \(\dfrac{9}{20}\) + \(\dfrac{11}{30}\) - \(\dfrac{13}{42}\) + \(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)
A = (1 + \(\dfrac{1}{2}\)) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\) + \(\dfrac{1}{6}\)) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)) - (\(\dfrac{1}{8}\) + \(\dfrac{1}{9}\))
A = 1 + \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = 1 - \(\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
\(A=\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)-\left(\dfrac{1}{8}+\dfrac{1}{9}\right)\)
\(A=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(A=1+\dfrac{1}{9}=\dfrac{10}{9}\)
B= \(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}\)
= \(\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)\)
= 1+\(\dfrac{1}{8}\)=\(\dfrac{9}{8}\)
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) . 2 : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{25}\)
A = \(\dfrac{56}{25}\)
1) âm năm phần 12
2) âm mười bảy phần 9
3) -1
Đây là đáp án còn làm bài từ làm nhé
\(=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{18-10+7}{12}+\dfrac{-27+22}{60}+\dfrac{-1}{24}\)
\(=\dfrac{15}{12}+\dfrac{-5}{60}+\dfrac{-1}{24}\)
\(=\dfrac{30-1+\left(-2\right)}{24}=\dfrac{27}{24}=\dfrac{9}{8}\)
Đề sai chắc chỗ cuối là \(\dfrac{17}{72}\)
\(S=\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}=\dfrac{1+2}{1.2}-\dfrac{2+3}{2\cdot3}+\dfrac{3+4}{3.4}-\dfrac{4+5}{4\cdot5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8\cdot9}=\dfrac{1}{2}+1-\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(B=2.\frac{100}{101}=\frac{200}{101}\)
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)