chứng mnh rằng nếu (ab +cd) chia hết cho 11 thì abcd chia hết cho11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
Ta có : abcdeg=10000ab + 100cd + eg
= 9999ab + ab + 99cd+ cd + eg
= 9999ab+99cd+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11
=>abcdeg chie hết cho 11
ta có:abcdeg=ab.10000+cd.100+eg
=ab.11.909+ab+cd.11.9+cd+eg
=(ab.909+cd.9).11+(ab+cd+eg)
vì (ab.909+cd.9).11\(⋮\)11
và (ab+cd+eg)
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
abcd= ab.100 + cd = 2.cd.100 + cd = 201.cd ( vì 201:67=3 nên 201.cd chia hết cho 67 )
vậy ab=2.cd thì abcd chia hết cho 67
Ta có ab + cd chia hết cho 11 nên ab + cd = 11k (k \(\in\) N*)
Do đó abcd = ab . 100 + cd = ab . 99 + ab + cd = ab . 9 . 11 + 11k = 11.(ab . 9 + k) chia hết cho 11
Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99 chia hết cho 11 => 99ab chia hết cho 11 mà ab + cd chia hết cho 11 => 99ab + ab + cd chia hết cho 11 hay abcd chia hết cho 11 (đpcm)