a,b,c>0
Cm(a+b+c)(1/a+1/b+1/c)>=9
Giúp mìnhv ới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)
Áp dụng bất đẳng thức Bunyakovsky , ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
a) Ta có: \(A\left(x\right)=ax^2+bx+c\)
Thay \(A\left(-1\right)\) ta được:
\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)
\(=b-8-b=-8\)
b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)
\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)
\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)
(a+b+c)(1/a+1/b+1/c)>=9
=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9
=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Áp dụng bất đẳng thức cauchy cho a/b và b/a ;b/c và c/b ; a/c và c/a
=>a/b+b/a>=2 (1)
a/c+c/a>=2 (2)
b/c+c/b>=2 (3)
Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Vậy (a+b+c)(1/a+1/b+1/c)>=9
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
Áp dụng dịnh lí Côsi, ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
\(=9\sqrt[3]{abc.\frac{1}{abc}}\)
\(=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng bđt Cauchy-Schwarz:
\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\)